Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng - Toán lớp 12
Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng
Với Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Viết phương trình mặt phẳng đi qua 1 điểm và song song với mặt phẳng từ đó đạt điểm cao trong bài thi môn Toán lớp 12.
Phương pháp giải
Cách 1:
1. Vecto pháp tuyến của mặt phẳng (P) là: n→ (A;B;C)
2. Do mặt phẳng (α) // (P) nên vecto pháp tuyến của mặt phẳng (α) là n→ (A;B;C).
3. Phương trình mặt phẳng (α):
A(x -xo ) +B(y -yo ) +C(z -zo) =0
Cách 2:
1. Mặt phẳng (α) // (P) nên phương trình mặt phẳng (α) có dạng:
Ax +By +Cz +D'=0 (*) với D'≠D
2. Vì mặt phẳng (α) đi qua điểm M (xo ;yo ;zo ) nên thay tọa độ điểm
M (xo ;yo ;zo ) vào (*) tìm đươc D’
Ví dụ minh họa
Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M (0; 1; 2) và song song với mặt phẳng (Q): 2x – 4y + 2 = 0.
Hướng dẫn:
Mặt phẳng (P) song song với mặt phẳng (Q) nên vecto pháp tuyến của mặt phẳng (Q) là n→ (2; -4;0)
Mặt phẳng (P) đi qua điểm M(0; 1; 2) và có vecto pháp tuyến n→ (2; -4;0) nên có phương trình là:
2(x -0) -4(y -1) +0 . (z -2) =0
⇔2x -4y +4 =0
⇔x -2y +2 =0
Bài 2: Viết phương trình mặt phẳng (P) đi qua điểm M (-1; 2; -3) và song song với mặt phẳng (Oxy)
Hướng dẫn:
Phương trình mặt phẳng (Oxy) là: z=0
Do mặt phẳng (P) song song song với mặt phẳng (Oxy) nên mặt phẳng (P) có dạng: z +c =0 (z≠0)
Do mặt phẳng (P) đi qua điểm M (-1; 2; -3) nên ta có: -3 +c = 0 ⇔ c =3
Vậy phương trình mặt phẳng (P) là: z +3 =0
Bài 3: Viết phương trình mặt phẳng (P) đi qua điểm M (0; -1; 3) và song song với mặt phẳng (Q): 2x+3y-z+5=0
Hướng dẫn:
Do mặt phẳng (P) song song với mặt phẳng (Q) nên mặt phẳng (P) có vecto pháp tuyến n→ (2; 3;-1)
Phương trình mặt phẳng (P) có vecto pháp tuyến n→ (2; 3;-1) và đi qua điểm M (0; -1; 3) là:
2(x -0) +3(y +1) -1(z -3)=0
⇔ 2x +3y -z =0
Bài 4: Trong không gian Oxyz, cho các điểm A (5; 1; 3), B(1; 2; 6), C(5; 0; 4), D(4; 0; 6). Viết phương trình mặt phẳng đi qua D và song song với mặt phẳng (ABC)
Hướng dẫn:
AB→=(-4;1;3); AC→=(0; -1;1)
⇒ [AB→ , AC→ ]=(4;4;4)
Gọi n→ là một vecto pháp tuyến của mặt phẳng (ABC) ta có:
nên n ⃗ cùng phương với [AB→ , AC→ ]
Chọn n→=(1;1;1) là vecto pháp tuyến của mặt phẳng (ABC)
Do mặt phẳng (P) song song với mặt phẳng (ABC) nên mặt phẳng (P) có vecto pháp tuyến n→=(1;1;1).
Phương trình mặt phẳng (P) đi qua A (5; 1; 3) và có vecto pháp tuyến
n→=(1;1;1) là:
x -5 +y -1 +z -3 =0
⇔ x +y +z -9 =0