X

Các dạng bài tập Toán lớp 12

Viết phương trình mặt phẳng đi qua 3 điểm - Toán lớp 12


Viết phương trình mặt phẳng đi qua 3 điểm

Với Viết phương trình mặt phẳng đi qua 3 điểm Toán lớp 12 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Viết phương trình mặt phẳng đi qua 3 điểm từ đó đạt điểm cao trong bài thi môn Toán lớp 12.

Viết phương trình mặt phẳng đi qua 3 điểm

Phương pháp giải

1. Tìm tọa độ các vecto AB , AC

2. Vecto pháp tuyến của mặt phẳng (P) là n=[AB , AC ]

3. Điểm thuộc mặt phẳng: A (hoặc B, hoặc C)

4. Viết phương trình mặt phẳng đi qua 1 điểm và có vecto pháp tuyến

n =[ AB , AC ]

Chú ý: Phương trình mặt phẳng (P) đi qua 3 điểm A(a;0;0); B(0;b;0); C(0;0;c) có dạng là:

(x/a) +(y/b) +(z/c) =1

với a .b .c ≠ 0. Trong đó A ∈ Ox; B ∈ Oy; C∈ Oz. Khi đó (P) được gọi là phương trình mặt phẳng theo đoạn chắn.

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1; -2; 0), B(1; 1; 1) và C(0; 1; -2)

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Trong không gian hệ tọa độ Oxzy, gọi (α) là mặt phẳng cắt ba trục tọa độ tại A (2; 0; 0), B(0; -3; 0), C(0; 0; 4). Phương trình mặt phẳng (α) là?

Hướng dẫn:

Cách 1:

Ta có: AB=(-2; -3;0); AC=(-2; 0; 4)

⇒ [AB , AC ]=(-12; 8; -6).

Gọi n là một vecto pháp tuyến của mặt phẳng (α) ta có:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải nên n cùng phương với [AB , AC ]

Chọn n=(6; -4; 3) ta được phương trình mặt phẳng (α) là

6(x -2) -4y +3z =0

⇔ 6x -4y +3z -12 =0

Cách 2:

Do mặt phẳng cắt các trục tọa độ nên ta có phương trình mặt phẳng theo đoạn chắn là:

(x/2) +(y/(-3)) +(z/4) =1

⇔ 6x -4y +3z -12 =0

Bài 3: Trong không gian hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm M(5; 4; 3) và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho OA = OB = OC. Viết phương trình mặt phẳng (P).

Hướng dẫn:

Do mặt phẳng (P) cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho OA = OB = OC nên A (a; 0; 0); B(0; a; 0); C(0; 0; a)

Phương trình mặt phẳng (P) theo đoạn chắn là:

(x/a) +(y/a) +(z/a) =1

Do mặt phẳng (P) đi qua điểm M (5; 4; 3) nên ta có:

(5/a) +(4/a) +(3/a) =1 ⇔ (12/a) =1 ⇔ a=12

Khi đó, phương trình mặt phẳng (P) là:

(x/12) +(y/12) +(z/12) =1

⇔ x +y +z -12 =0

Bài 4: : Trong không gian hệ tọa độ Oxyz, cho bốn điểm A(5; 1; 3), B(1; 6;2), C(5; 0; 4), D(4; 0; 6). Mặt phẳng (P) đi qua hai điểm A, B và song song với đường thẳng CD có phương trình là:

Hướng dẫn:

AB=(-4;5;-1); CD=(-1;0;2)

⇒ [AB , CD ]=(10;9;5)

Gọi n là một vecto pháp tuyến của mặt phẳng (P)

Do A, B thuộc mặt phẳng (P), mặt phẳng (P) song song với đường thẳng CD nên ta có:Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảin cùng phương với [AB , CD ]

Chọn n=(10;9;5)

Vậy phương trình mặt phẳng (P) có vecto pháp tuyến n=(10;9;5) và đi qua điểm A(5; 1; 3) là:

10(x -5) +9(y -1) +5(z -3) =0

⇔ 10x +9y +5z -74 =0

Xem thêm các dạng bài tập Toán lớp 12 chọn lọc, có lời giải hay khác: