Cho A = 1 + 21 + 22 + 23 + … + 22021. Tìm x thuộc ℕ sao cho 2x = A + 1.
Câu hỏi:
Cho A = 1 + 21 + 22 + 23 + … + 22021. Tìm x thuộc ℕ sao cho 2x = A + 1.
Trả lời:
A = 1 + 21 + 22 + 23 + … + 22021
2A = 2(1 + 21 + 22 + … + 22021) = 2 + 22 + … + 22022
2A – A = (2 + 22 + … + 22022) – (1 + 21 + 22 + 23 + … + 22021)
A = 22022 – 1
Lại có: 2x = A + 1 = 22022 – 1 + 1 = 22022
Vậy x = 2022.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Chứng minh rằng A = 1.5 + 2.6 + 3.7 + … + 2023.2027 chia hết cho 11, 23 và 2023.
Xem lời giải »
Câu 4:
Cho hình bình hành ABCD. Gọi E và F theo thứ tự là trung điểm của AB và CD
a) Chứng minh rằng AF // CE.
b) Gọi M, N theo thứ tự là giao điểm của BD và AF, CE. Chứng minh rằng DM = MN = NB.
Xem lời giải »
Câu 5:
Tìm giá trị của m để (m + 1)x2 – 2(m + 1)x + 4 ≥ 0 với mọi x thuộc ℝ.
Xem lời giải »
Câu 6:
Cho tam giác ABC cân tại A. Gọi D, E, F lần lượt là trung điểm của AB, AC, BC. Điểm I đối xứng với F qua E. Chứng minh tứ giác BDEC là hình thang cân.
Xem lời giải »
Câu 8:
Cho tam giác ABC có trung tuyến AM , Gọi I là trung điểm AM , D là giao điểm BI và AC. Chứng minh AD = .
Xem lời giải »