X

Các dạng bài tập Toán lớp 12

Cho a, b, c là 3 số nguyên dương thỏa mãn tổng của 160 và bình phương của a bằng tổng của 5 và bình phương của b.


Câu hỏi:

Cho a, b, c là 3 số nguyên dương thỏa mãn tổng của 160 và bình phương của a bằng tổng của 5 và bình phương của b. Tổng của 320 và bình phương của a bằng tổng của 5 và bình phương của c. Tìm a

Trả lời:

Ta có: 160 + a2 = 5 + b2

b2 – a2 = 155

(b – a)(b + a) = 155 (1)

Lại có: b - a, b + a là các số nguyên, b – a < b + a (2).

Từ (1), (2) ta có bảng:

b - a

1

5

b + a

155

31

a

77

13

Với a = 77 thì 320 + a2 = 5 + c2, suy ra c không phải số nguyên

Với a = 13 thì 320 + a2 = 5 + c2 = 320 + 132 = 489

c2 = 484 c = 22.

Vậy a = 13.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Xem lời giải »


Câu 2:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem lời giải »


Câu 3:

Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).

Xem lời giải »


Câu 4:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Xem lời giải »


Câu 5:

Cho 2 số thực dương a, b thỏa mãn a2 + 2ab + 2b2 – 2b = 8.

Chứng minh rằng 0 < a + b ≤ 3.

Xem lời giải »


Câu 6:

Cho a, b, c, d thỏa mãn a2 + b2 = 25; c2 + d2 = 16; ac + bd ≥ 20. Tìm max a + d.

Xem lời giải »


Câu 7:

Cho các số thực a, b, c sao cho a + b + c = 3; a2 + b2 + c2 = 29 và abc = 11. Tính a5 + b5 + c5.

Xem lời giải »


Câu 8:

Cho a, b >0 thỏa mãn a + b ≤ 1. Tìm GTNN của P=a2+b2+1a2+1b2

Xem lời giải »