Cho a, b, c là 3 số nguyên dương thỏa mãn tổng của 160 và bình phương của a bằng tổng của 5 và bình phương của b.
Câu hỏi:
Cho a, b, c là 3 số nguyên dương thỏa mãn tổng của 160 và bình phương của a bằng tổng của 5 và bình phương của b. Tổng của 320 và bình phương của a bằng tổng của 5 và bình phương của c. Tìm a
Trả lời:
Ta có: 160 + a2 = 5 + b2
⇔ b2 – a2 = 155
⇔ (b – a)(b + a) = 155 (1)
Lại có: b - a, b + a là các số nguyên, b – a < b + a (2).
Từ (1), (2) ta có bảng:
b - a
|
1
|
5
|
b + a
|
155
|
31
|
a
|
77
|
13
|
Với a = 77 thì 320 + a2 = 5 + c2, suy ra c không phải số nguyên
Với a = 13 thì 320 + a2 = 5 + c2 = 320 + 132 = 489
⇒ c2 = 484 ⇒ c = 22.
Vậy a = 13.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:
a)
b) Tứ giác OKME là hình chữ nhật.
c) P, O, N thẳng hàng và KE // PN.
Xem lời giải »
Câu 2:
Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức
Xem lời giải »
Câu 3:
Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).
Xem lời giải »
Câu 4:
Cho tam giác ABC. Hai điểm M và N di chuyển sao cho . Chứng minh MN luôn đi qua một điểm cố định.
Xem lời giải »
Câu 5:
Cho 2 số thực dương a, b thỏa mãn a2 + 2ab + 2b2 – 2b = 8.
Chứng minh rằng 0 < a + b ≤ 3.
Xem lời giải »
Câu 6:
Cho a, b, c, d thỏa mãn a2 + b2 = 25; c2 + d2 = 16; ac + bd ≥ 20. Tìm max a + d.
Xem lời giải »
Câu 7:
Cho các số thực a, b, c sao cho a + b + c = 3; a2 + b2 + c2 = 29 và abc = 11. Tính a5 + b5 + c5.
Xem lời giải »
Câu 8:
Cho a, b >0 thỏa mãn a + b ≤ 1. Tìm GTNN của
Xem lời giải »