X

Các dạng bài tập Toán lớp 12

Cho các số thực a, b, c sao cho a + b + c = 3; a2 + b2 + c2 = 29 và abc = 11. Tính a5 + b5 + c5.


Câu hỏi:

Cho các số thực a, b, c sao cho a + b + c = 3; a2 + b2 + c2 = 29 và abc = 11. Tính a5 + b5 + c5.

Trả lời:

Xét: ab + bc + ca = 12a+b+c2a2+b2+c2=12.3229=10

Suy ra: a2b2 + b2c2 + c2a2 = (ab + bc + ca)2 – 2abc(a + b + c) = (-10)2 – 2.11.3 = 34

 a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca) = 3.(29 + 10) = 117

Suy ra: a3 + b3 + c3 = 150

Xét a5 + b5 + c5 = (a3 + b3 + c3)(a2 + b2 + c2) – [( a2b2 + b2c2 + c2a2)(a + b + c) – abc(ab + ac + bc) = 150.29 – [(34.3 – 11.(-10)] = 4138.

Vậy a5 + b5 + c5 = 4138.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho đường tròn (O) đường kính AB. Qua trung điểm E của OB kẻ một đường thẳng vuông góc với OB, cắt đường tròn (O) ở M và N. Kẻ dây MP song song với AB. Gọi I là điểm chính giữa của cung nhỏ PM. Gọi K là giao điểm của OI và PM. Chứng minh rằng:

a) AP=BN

b) Tứ giác OKME là hình chữ nhật.

c) P, O, N thẳng hàng và KE // PN.

Xem lời giải »


Câu 2:

Cho đa thức R(x) = x2 – 2x. Tính giá trị biểu thức S=1R3+1R4+...+1R2022+1R2023

Xem lời giải »


Câu 3:

Rút gọn biểu thức: (4x – 1)3 - (4x − 3)(16x2 + 3).

Xem lời giải »


Câu 4:

Cho tam giác ABC. Hai điểm M và N di chuyển sao cho MN=2MAMB+MC. Chứng minh MN luôn đi qua một điểm cố định.

Xem lời giải »


Câu 5:

Cho a, b >0 thỏa mãn a + b ≤ 1. Tìm GTNN của P=a2+b2+1a2+1b2

Xem lời giải »


Câu 6:

Cho ab+c+ba+c+ca+b=1 . Chứng minh rằng a2b+c+b2a+c+c2a+b=0

Xem lời giải »


Câu 7:

Giả sử a, b là 2 số thực phân biệt thỏa mãn: a2 + 3a = b2 + 3b = 2. Chứng minh rằng a3 + b3 = -45.

Xem lời giải »


Câu 8:

Cho hai tập hợp A = (-1;2] và B = {x R| mx ≥ 1} (với m là tham số thực). Xác định tất cả giá trị của tham số m để A ∩ B = .

Xem lời giải »