X

Các dạng bài tập Toán lớp 12

Cho điểm A nằm ngoài đường tròn tâm O, từ A vẽ hai tiếp tuyến AB, AC; B và C là hai tiếp điểm và một cát tuyến ADE đến (O). a) Chứng minh AB2 = AD.AE.


Câu hỏi:

Cho điểm A nằm ngoài đường tròn tâm O, từ A vẽ hai tiếp tuyến AB, AC; B và C là hai tiếp điểm và một cát tuyến ADE đến (O).

a) Chứng minh AB2 = AD.AE.

b) Gọi H là giao điểm của OA và BC. Chứng minh tứ giác DEOH nội tiếp, chứng minh HB là tia phân giác của EHD^

Trả lời:

Cho điểm A nằm ngoài đường tròn tâm O, từ A vẽ hai tiếp tuyến AB, AC; B và C là hai tiếp điểm và một cát tuyến ADE đến (O).  a) Chứng minh AB2 = AD.AE. (ảnh 1)

a) Xét tam giác ABD và tam giác ABE có:

Chung A^

ABD^=AEB^ (vì AB là tiếp tuyến (O))

∆ABD ∆AEB (g.g)

⇒ ABAE=ADAB

AB2 = AD.DE

b) Ta có: AB,AC là tiếp tuyến của (O)

AB OB, BC AO

BH AO

AB2 = AH.AO (Hệ thức lượng trong tam giác vuông)

AH.AO = AD.AE

⇒ AHAE=ADAO

Mà DAH^=EAO^

∆ADH ∆AOE (c.g.c)

⇒ AHD^=AEO^

DHOE nội tiếp

⇒ AHD^=DEO^=EDO^=EHO^

⇒ DHB^=90°AHD^=90°EHO^=BHE^

Nên: HB là phân giác EHD^

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho ∆ABC vuông tại A, đường cao AH. Biết 3AB = 2AC. Tính sinACB^, tanACB^

Xem lời giải »


Câu 2:

Cho tam giác ABC ( AB > BC) có AB + BC = 11cm, B^=60°. Bán kính đường tròn nội tiếp tam giác ABC là r=23 cm. Tính đường cao AH của tam giác ABC.

Xem lời giải »


Câu 3:

Cho C = 5 + 52 + … + 520. Chứng minh rằng C chia hết cho 5, 6, 13.

Xem lời giải »


Câu 4:

Cho x + y = 12 và xy = 32. Tính x4 + y4.

Xem lời giải »


Câu 5:

Cho M=42xx15. Tìm số nguyên x để M đạt GTNN.

Xem lời giải »


Câu 6:

Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm. Điểm M nằm giữa B và C, gọi I là trung điểm của AC, lấy điểm N đối xứng M qua I.

a) Tính độ dài cạnh BC?

b) Tứ giác AMCN là hình gì? Vì sao?

Xem lời giải »


Câu 7:

Cho tứ diện ABCD có M nằm trên cạnh AB, N nằm trên cạnh AD thoả MB = 2MA, AN = 2ND. Gọi P là điểm thuộc miền trong của tam giác BCD. Tìm giao tuyến của (MNP) và (ABC).

Xem lời giải »