X

Các dạng bài tập Toán lớp 12

Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc. Gọi I là điểm trên cung AC sao cho khi vẽ tiếp tuyến qua I và cắt DC kéo dài tại M thì IC = CM.


Câu hỏi:

Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc. Gọi I là điểm trên cung AC sao cho khi vẽ tiếp tuyến qua I và cắt DC kéo dài tại M thì IC = CM. Độ dài OM tính theo bán kính là?

Trả lời:

Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc. Gọi I là điểm trên cung AC sao cho khi vẽ tiếp tuyến qua I và cắt DC kéo dài tại M thì IC = CM.  (ảnh 1)

Ta có: CIM^=12IOC^  (góc tạo bởi tiếp tuyến và dây cung với góc ở tâm chắn cung IC) 

 IOC^=2CIM^

Lại có OCI^=CIM^+CMI^=2CIM^ (do Δ∆CMI cân tại C)

Do đó Δ∆OIC đều (vì OIC^=IOC^=OCI^)

 IOM^=60°

+) Xét Δ∆OIM vuông tại I có:

cosIOM^=cos60°=OIOM=ROM=12 

 OM = 2R.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A = (m; m + 3) và B (2; 6m + 1). Tìm m để A ∩ B = ∅.

Xem lời giải »


Câu 2:

Cho hai tập hợp khác rỗng A = [m – 1; 5) và B = [-3; 2m + 1]. Tìm m để A B.

Xem lời giải »


Câu 3:

Cho tam giác ABC cân tại A, đường cao AD, K là trung điểm của AD. Gọi I là hình chiếu của điểm D trên CK. Chứng minh rằng AIB^=90°.

Xem lời giải »


Câu 4:

Cho tam giác ABC có 3 góc nhọn. Chứng minh sinA + cosA + sinC + cosC > 2.

Xem lời giải »


Câu 5:

Cho ba điểm A, B, C trên đường tròn (O). Tiếp tuyến tại A cắt dây cung CB kéo dài tại điểm M. Chứng minh: MAC^=ABC^ACB^.

Xem lời giải »


Câu 6:

Cho đường tròn tâm O. Trên nửa đường tròn đường kính AB lấy hai điểm C, D. Từ C kẻ CH vuông góc với AB, nó cắt đường tròn tại điểm thứ hai là E. Từ A kẻ AK vuông góc với DC, nó cắt đường tròn tại điểm thứ hai là F. Chứng minh rằng:

a) Hai cung nhỏ CF và BD bằng nhau.

b) Hai cung nhỏ BF và DE bằng nhau.

c) DE = BF.

Xem lời giải »


Câu 7:

Cho 0<α<π2. Khẳng định nào sau đây đúng?

Xem lời giải »


Câu 8:

Cho BAC^ = 70°, ACB^ = 55°, tia Ax là tia phân giác của yAC^.

a) Tính số đo của yAC^, yAx^

b) Chứng minh: Ax // BC.

Cho BAC = 70°,  ACB = 55°, tia Ax là tia phân giác của góc yAC (ảnh 1)

Xem lời giải »