Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh
Câu hỏi:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng bằng . Tính theo a thể tích V của khối chóp S.ABC.
B. .
C. .
D. .
Trả lời:
Vì nên hình chiếu vuông góc của SA trên mặt đáy là HA. Do đó .
Tam giác ABC đều cạnh a nên .
Tam giác vuông SHA, có .
Diện tích tam giác đều ABC là .
Vậy Chọn A.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và Tính thể tích V của khối chóp S.ABCD
Xem lời giải »
Câu 2:
Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, và khoảng cách từ A đến mặt phẳng bằng Tính theo a thể tích V của khối chóp S.ABC
Xem lời giải »
Câu 3:
Cho khối chóp S.ABC có SA vuông góc với đáy, và . Tính thể tích V của khối chóp S.ABC.
Xem lời giải »
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh , . Hai mặt bên và cùng vuông góc với mặt phẳng đáy , cạnh SA. Tính theo a thể tích V của khối chóp S.ABCD
Xem lời giải »
Câu 5:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B; đỉnh S cách đều các điểm Biết ; góc giữa đường thẳng SB và mặt đáy bằng . Tính theo a thể tích V của khối chóp S.ABC.
Xem lời giải »
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, BD=1. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm OD. Đường thẳng SD tạo với mặt đáy một góc bằng . Tính thể tích khối chóp S.ABCD.
Xem lời giải »
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a. Tam giác ABC đều, hình chiếu vuông góc H của đỉnh S trên mặt phẳng trùng với trọng tâm của tam giác ABC. Đường thẳng SD hợp với mặt phẳng góc . Tính theo a thể tích V của khối chóp S.ABCD
Xem lời giải »
Câu 8:
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh đáy AD và BC, Cạnh bên SA vuông góc với mặt phẳng và SD tạo với mặt phẳng góc . Tính thể tích V của khối chóp đã cho.
Xem lời giải »