X

Các dạng bài tập Toán lớp 12

Cho hình thoi ABCD có góc a = 60 độ . Trên AB, AC lấy điểm M, N sao cho BM = CN. Chứng minh rằng MDN là tam giác đều.


Câu hỏi:

Cho hình thoi ABCD có A^=60°. Trên AB, AC lấy điểm M, N sao cho BM = CN. Chứng minh rằng MDN là tam giác đều.

Trả lời:

Cho hình thoi ABCD có góc a = 60 độ . Trên AB, AC lấy điểm M, N sao cho BM = CN. Chứng minh rằng MDN là tam giác đều. (ảnh 1)

Ta có: MB + NB = AB = MB + AM

Suy ra: NB = AM

Tương tự: BM = NC

Ta có: A^=60°  D^=180°60°=120°

Vì ABCD là hình thoi nên D^=B^=120°

Xét tam giác BMD và tam giác CND có:

BM = NC

D^=B^=120°

Chung BD

∆BMD = ∆CND (c.g.c)

MD = ND (1); BDM^=CDN^

Lại có: BDN^+CDN^=60°

BDN^+BDM^=60° hay MDN^=60°

Vậy tam giác MDN là tam giác đều.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho A = (m; m + 3) và B (2; 6m + 1). Tìm m để A ∩ B = ∅.

Xem lời giải »


Câu 2:

Cho hai tập hợp khác rỗng A = [m – 1; 5) và B = [-3; 2m + 1]. Tìm m để A B.

Xem lời giải »


Câu 3:

Cho tam giác ABC cân tại A, đường cao AD, K là trung điểm của AD. Gọi I là hình chiếu của điểm D trên CK. Chứng minh rằng AIB^=90°.

Xem lời giải »


Câu 4:

Cho tam giác ABC có 3 góc nhọn. Chứng minh sinA + cosA + sinC + cosC > 2.

Xem lời giải »


Câu 5:

Cho hình bình hành ABCD có A^=120°. Tia phân giác của D^ qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Xem lời giải »


Câu 6:

Cho B = 1 + 5 + 52 + … + 5100. Hỏi 4B + 1 có phải số chính phương không?

Xem lời giải »


Câu 7:

Cho 3 số dương x, y, z có tích bằng 144. Tìm GTNN của biểu thức P=x+14yy+19zx+136z

Xem lời giải »


Câu 8:

Cho 7 số tự nhiên khác nhau có tổng bằng 100. Chứng minh rằng trong 7 số luôn có 3 số mà tổng của chúng lớn hơn hoặc bằng 50.

Xem lời giải »