Cho số phức z thỏa mãn điều kiện 11z^10 + 10iz^9 + 10iz -11 = 0
Câu hỏi:
Cho số phức z thỏa mãn điều kiện 11z10 + 10iz9 + 10iz -11 = 0. Tìm khẳng định đúng
A. |z| > 1
B. |z| = 1
C. |z| < 1
D. |z| > 1/3
Trả lời:
Chọn B.
Ta có : 11z10 + 10iz9 + 10iz - 11 = 0.
Hay z9( 11z + 10i) = 11 - 10iz
Hay:
Đặt z = x + yi. Từ (*) suy ra:
Xét các trường hợp:
+ Nếu |z| > 1 thì x2 + y2> 1 nên: g( x; y) =112( x2 + y2) + 102 + 220y = 102( x2 + y2) + 21( x2 + y2) + 102 + 220y > 102( x2 + y2) + 112 + 220y = f( x; y)
Do đó |z9 | < 1 ⇒ z < 1 (mâu thuẫn).
+ Nếu |z| < 1 thì x2 + y2 < 1 nên:
G( x; y) = 112( x2 + y2) + 102+220y = 102( x2+ y2) + 21( x2 + y2) + 102+ 220y < 102( x2 + y2) + 112+ 220y = f( x; y)
Suy ra |z9| > 1 ⇒ |z| > 1 (mâu thuẫn).
+ Nếu |z| = 1 thì g( x; y) = f( x; y) (thỏa mãn)
Vậy |z| = 1.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Biết z1; z2 là các số phức thỏa mãn điều kiện . Tìm |z1 + z2|
Xem lời giải »
Câu 2:
Biết z1; z2 là số phức thỏa điều kiện z2 - |z|2 + 1 = 0. Tính
Xem lời giải »
Câu 3:
Biết z1; z2; z3; z4 là các số phức thỏa điều kiện .
Tính | z1| + | z2| + | z3| + | z4|
Xem lời giải »
Câu 4:
Cho số phức z thỏa điều kiện . Tìm khẳng định đúng
Xem lời giải »
Câu 5:
Trong tập số phức, giá trị của m để phương trình bậc hai z2 + mz + i = 0 có tổng bình phương hai nghiệm bằng -4i là:
Xem lời giải »
Câu 6:
Gọi z1 ; z2 là hai nghiệm của phương trình z2 + 2z+ 8= 0, trong đó z1 có phần ảo dương. Giá trị của số phức là:
Xem lời giải »
Câu 7:
Gọi z1; z2; z3; z4 là bốn nghiệm của phương trình ( z - 1 )( z + 2) ( z2 - 2z + 2) = 0 trên tập số phức, tính tổng:
Xem lời giải »
Câu 8:
Cho z1; z2; z3; z4 là các nghiệm của phương trình: (z2 +1) (z2 - 2z + 2) = 0 . Tính
Xem lời giải »