X

Các dạng bài tập Toán lớp 12

Cho tam giác ABC vuông tại A và đường cao AH (H ∈ BC). 1) Cho AH = 6; BH = 3. Tính BC và số đo (góc làm tròn đến phút). 2) Đường thẳng vuông góc với BC tại B cắt tia CA tại K. Hạ AE ⊥ BK (E


Câu hỏi:

Cho tam giác ABC vuông tại A và đường cao AH (H BC).

1) Cho AH = 6; BH = 3. Tính BC và số đo ABC^ (góc làm tròn đến phút).

2) Đường thẳng vuông góc với BC tại B cắt tia CA tại K. Hạ AE BK (E BK). Chứng minh rằng: AK.AC = EH2, từ đó suy ra BH.HC + BE.EK = AK.AC.

Trả lời:

Cho tam giác ABC vuông tại A và đường cao AH (H ∈ BC). 1) Cho AH = 6; BH = 3. Tính BC và số đo   (góc làm tròn đến phút). 2) Đường thẳng vuông góc với BC tại B cắt tia CA tại K. Hạ AE ⊥ BK (E ∈ BK). Chứng minh rằng: AK.AC = EH2, từ đó suy ra BH.HC + BE.EK = AK.AC. (ảnh 1)

1) Áp dụng hệ thức lượng giác vào tam giác ABC vuông tại A có đường cao AH

AH² = BH.HC

6²= 3. HC HC = 6² : 3= 12cm

Ta có : BC = BH + HC = 3 + 12 =15 cm

1AH2=1AB2+1AC2AC=65AB=AH2+BH2=32+62=35

Xét tam giác BAC vuông tại A có: sinABC^=ACBC=6515=255ABC^=63°

2) Xét tam giác BAK và tam giác CAB có:

BAK^=BAC^=90°

BKA^=ABC^ (cùng phụ với KBA^)

Suy ra: ∆BAK ∆CAB (g.g)

 BAAC=AKABAB2=AK.AC

Lại có: ABHE là hình chữ nhật vì H^=B^=E^=90° nên AB = HE

Suy ra: EH2 = AK.AC (1)

Xét tam giác BEA và tam giác AEK có:

BEA^=AEK^=90°ABE^=KAE^=90°EAB^

Suy ra: ∆BEA ∆AEK (g.g)

BEAE=AEEK BE.EK = AE2

Xét tam giác BHA và tam giác AHC có:

BHA^=CHA^=90°ABH^=CAH^=90°ACH^

Suy ra: ∆BHA ∆AHC (g.g)

BHAH=AHHC  AH2 = BH.HC

BH.HC + BE.EK = AE2 + AH2 = EH2 (2)

Từ (1) và (2) suy ra: BH.HC + BE.EK = AK.AC.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh rằng A = 1.5 + 2.6 + 3.7 + … + 2023.2027 chia hết cho 11, 23 và 2023.

Xem lời giải »


Câu 2:

Chứng minh rằng 2sin4xtan2x=cot2x.

Xem lời giải »


Câu 3:

Tìm x biết: xx1=3

Xem lời giải »


Câu 4:

Cho hình bình hành ABCD. Gọi E và F theo thứ tự là trung điểm của AB và CD

 a) Chứng minh rằng AF // CE.

b) Gọi M, N theo thứ tự là giao điểm của BD và AF, CE. Chứng minh rằng DM = MN = NB.

Xem lời giải »


Câu 5:

Chứng minh rằng m + 2014n chia hết cho 2015 khi và chỉ khi n + 2014m chia hết cho 2015.

Xem lời giải »


Câu 6:

Giải phương trình: x24x+3=2254x2 (*).

Xem lời giải »


Câu 7:

Cho ΔABC cân tại A có AB = 5cm; BC = 6cm. Kẻ phân giác trong AM (M BC). Gọi O là trung điểm của AC và K là điểm đối xứng của M qua O.

a) Tính diện tích tam giác ABC.

b) Tứ giác ABMO là hình gì? Vì sao?

c) Để tứ giác AMCK là hình vuông thì tam giác ABC phải có thêm điều kiện gì?

Xem lời giải »


Câu 8:

Xác định các hệ số a, b, c biết: (a – 1)(x2 – bx + 3) = 2x2 + 5x + c.

Xem lời giải »