Cho tam giác ABC vuông tại A và đường cao AH (H ∈ BC). 1) Cho AH = 6; BH = 3. Tính BC và số đo (góc làm tròn đến phút). 2) Đường thẳng vuông góc với BC tại B cắt tia CA tại K. Hạ AE ⊥ BK (E
Câu hỏi:
Cho tam giác ABC vuông tại A và đường cao AH (H ∈ BC).
1) Cho AH = 6; BH = 3. Tính BC và số đo (góc làm tròn đến phút).
2) Đường thẳng vuông góc với BC tại B cắt tia CA tại K. Hạ AE ⊥ BK (E ∈ BK). Chứng minh rằng: AK.AC = EH2, từ đó suy ra BH.HC + BE.EK = AK.AC.
Trả lời:
1) Áp dụng hệ thức lượng giác vào tam giác ABC vuông tại A có đường cao AH
AH² = BH.HC
⇒ 6²= 3. HC ⇒ HC = 6² : 3= 12cm
Ta có : BC = BH + HC = 3 + 12 =15 cm
Xét tam giác BAC vuông tại A có: sin
2) Xét tam giác BAK và tam giác CAB có:
(cùng phụ với )
Suy ra: ∆BAK ∽ ∆CAB (g.g)
⇒
Lại có: ABHE là hình chữ nhật vì nên AB = HE
Suy ra: EH2 = AK.AC (1)
Xét tam giác BEA và tam giác AEK có:
Suy ra: ∆BEA ∽ ∆AEK (g.g)
⇒ ⇒ BE.EK = AE2
Xét tam giác BHA và tam giác AHC có:
Suy ra: ∆BHA ∽ ∆AHC (g.g)
⇒ ⇒ AH2 = BH.HC
⇒ BH.HC + BE.EK = AE2 + AH2 = EH2 (2)
Từ (1) và (2) suy ra: BH.HC + BE.EK = AK.AC.