X

Các dạng bài tập Toán lớp 12

Chứng minh rằng m + 2014n chia hết cho 2015 khi và chỉ khi n + 2014m chia hết cho 2015.


Câu hỏi:

Chứng minh rằng m + 2014n chia hết cho 2015 khi và chỉ khi n + 2014m chia hết cho 2015.

Trả lời:

Ta có: m + 2014n = 2015(m + n) – (n + 2014m)

Do 2015(m + n) 2015 và m + 2014n 2015

Nên: n + 2014m chia hết cho 2015.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh rằng A = 1.5 + 2.6 + 3.7 + … + 2023.2027 chia hết cho 11, 23 và 2023.

Xem lời giải »


Câu 2:

Chứng minh rằng 2sin4xtan2x=cot2x.

Xem lời giải »


Câu 3:

Tìm x biết: xx1=3

Xem lời giải »


Câu 4:

Cho hình bình hành ABCD. Gọi E và F theo thứ tự là trung điểm của AB và CD

 a) Chứng minh rằng AF // CE.

b) Gọi M, N theo thứ tự là giao điểm của BD và AF, CE. Chứng minh rằng DM = MN = NB.

Xem lời giải »


Câu 5:

Giải phương trình: x24x+3=2254x2 (*).

Xem lời giải »


Câu 6:

Cho ΔABC cân tại A có AB = 5cm; BC = 6cm. Kẻ phân giác trong AM (M BC). Gọi O là trung điểm của AC và K là điểm đối xứng của M qua O.

a) Tính diện tích tam giác ABC.

b) Tứ giác ABMO là hình gì? Vì sao?

c) Để tứ giác AMCK là hình vuông thì tam giác ABC phải có thêm điều kiện gì?

Xem lời giải »


Câu 7:

Xác định các hệ số a, b, c biết: (a – 1)(x2 – bx + 3) = 2x2 + 5x + c.

Xem lời giải »


Câu 8:

Chứng minh rẳng A = 1 + 4 + 42 + 43 + … + 42021 chia hết cho 21.

Xem lời giải »