Cho z1; z2 là hai nghiệm phức của phương trình z^2 - 2z + 4 = 0
Câu hỏi:
Cho z1; z2 là hai nghiệm phức của phương trình z2 - 2z + 4 = 0. Phần thực, phần ảo của số phức: lần lượt là bao nhiêu, biết z1 có phần ảo dương.
A. 0; 1
B. 1; 2
C. 1; 0
D. tất cả sai
Trả lời:
Chọn C.
Vì Δ = -3 nên phương trình có hai nghiệm phức: (do z1 có phần ảo dương)
Ta có:
Do đó:
Vậy phần thực bằng 1, phần ảo bằng 0.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Biết z1; z2 là các số phức thỏa mãn điều kiện . Tìm |z1 + z2|
Xem lời giải »
Câu 2:
Biết z1; z2 là số phức thỏa điều kiện z2 - |z|2 + 1 = 0. Tính
Xem lời giải »
Câu 3:
Biết z1; z2; z3; z4 là các số phức thỏa điều kiện .
Tính | z1| + | z2| + | z3| + | z4|
Xem lời giải »
Câu 4:
Cho số phức z thỏa điều kiện . Tìm khẳng định đúng
Xem lời giải »
Câu 5:
Cho số phức z biết z= 1 + . Tìm tổng của phần thực và phần ảo của số phức w = (1 + i)z5
Xem lời giải »
Câu 6:
Gọi z1; z2 là hai nghiệm phức của phương trình z2 – z + 1 = 0 . Phần thực, phần ảo của số phức lần lượt là?
Xem lời giải »
Câu 7:
Cho các số phức z thỏa mãn: (2 - z)5 = z5. Hỏi phần thực của z là bao nhiêu?
Xem lời giải »
Câu 8:
Cho phương trình 8z2 - 4(a + 1)z + 4a + 1 = 0 (1) với a là tham số. Tính tổng tất cả các giá trị của a để (1) có hai nghiệm z1; z2 thỏa mãn z1/ z2 là số ảo, trong đó z2 là số phức có phần ảo dương.
Xem lời giải »