Tìm mô-đun của số phức w = b + ci biết số phức
Câu hỏi:
Tìm mô-đun của số phức w = b + ci biết số phức là nghiệm của phương trình z2 + 8bz + 64c = 0
A.
B. 7
C.
D.
Trả lời:
Chọn C.
+ Ta có
Do đó
Theo giả thiết ta có ( 8 + 16i) 2 + 8b( 8 + 16i) + 64c = 0
Tương đương: ( 1 + 2i) 2 + b( 1 + 2i) + c = 0
Hay ( 2b + 4)i + b + c – 3 = 0
Ta có hệ
Khi đó:
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?
Xem lời giải »
Câu 2:
Gọi z1, z2 lần lượt là hai nghiệm của phương trình z2 - (1 + 3i) z – 2 + 2i = 0 và thỏa mãn | z1| > | z2|. Tìm giá trị của biểu thức
Xem lời giải »
Câu 3:
Gọi z1; z2 lần lượt là hai nghiệm của phương trình z2 – 4z + 7 = 0 .Tính giá trị của biểu thức
Xem lời giải »
Câu 4:
Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?
Xem lời giải »
Câu 5:
Cho a,b,c là 3 số phức phân biệt khác 0 và modul của chúng bằng nhau .Nếu một nghiệm của phương trình az2 + bz + c = 0 có môđun bằng 1 thì khẳng định nào sau đây đúng.
Xem lời giải »
Câu 6:
Cho số phức z thỏa mãn là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là:
Xem lời giải »
Câu 7:
Cho số phức z thỏa mãn điều kiện |z – 3 + 4i| ≤ 2. Trong mặt phẳng Oxy tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích
Xem lời giải »
Câu 8:
Trong mặt phẳng phức Oxy, tâp hợp các điểm biểu diễn số phức z sao cho z 2 là số thuần ảo là hai đường thẳng d1 ; d2. Góc α giữa 2 đường thẳng d1 ; d2 là bao nhiêu?
Xem lời giải »