Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x² và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số). 1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x² và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số).
1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B.
2. Gọi x1, x2 lần lượt là hoành độ của A và B. Tính tích các giá trị của m để 2x1 + x2 = 1
Trả lời:
1. Xét phương trình hoành độ giao điểm:
x2 – mx – 3 = 0 (*)
∆ = m2 + 12 > 0 với mọi m
Nên (*) luôn có 2 nghiệm phân biệt hay đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B.
2. Áp dụng hệ thức Vi-ét ta có: {x1+x2=m(2)x1x2=−3(3)
Theo đề bài: 2x1 + x2 = 1 (4)
Từ (2) và (4) ta có hệ phương trình: {x1+x2=m2x1+x2=1⇔{x1=1−mx1+x2=m⇔{x1=1−mx2=2m−1
Thay vào (3) ta được: (1 – m)(2m – 1) = -3
⇔ 2m2 – 3m – 2 = 0
⇔ [m=2m=−12
Tích các giá trị của m là: 2.(−12)=−1