Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x² và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số). 1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x² và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số).
1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B.
2. Gọi x1, x2 lần lượt là hoành độ của A và B. Tính tích các giá trị của m để 2x1 + x2 = 1
Trả lời:
1. Xét phương trình hoành độ giao điểm:
x2 – mx – 3 = 0 (*)
∆ = m2 + 12 > 0 với mọi m
Nên (*) luôn có 2 nghiệm phân biệt hay đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B.
2. Áp dụng hệ thức Vi-ét ta có:
Theo đề bài: 2x1 + x2 = 1 (4)
Từ (2) và (4) ta có hệ phương trình:
Thay vào (3) ta được: (1 – m)(2m – 1) = -3
⇔ 2m2 – 3m – 2 = 0
⇔
Tích các giá trị của m là:
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Chứng minh rằng A = 1.5 + 2.6 + 3.7 + … + 2023.2027 chia hết cho 11, 23 và 2023.
Xem lời giải »
Câu 4:
Cho hình bình hành ABCD. Gọi E và F theo thứ tự là trung điểm của AB và CD
a) Chứng minh rằng AF // CE.
b) Gọi M, N theo thứ tự là giao điểm của BD và AF, CE. Chứng minh rằng DM = MN = NB.
Xem lời giải »
Câu 5:
Cho hai số a, b thỏa mãn a + b = 1.
Tính giá trị của biểu thức P = 2a3 + 6ab + 2b3 – 2024.
Xem lời giải »
Câu 6:
Cho tam giác ABC vuông tại A và đường cao AH (H ∈ BC).
1) Cho AH = 6; BH = 3. Tính BC và số đo (góc làm tròn đến phút).
2) Đường thẳng vuông góc với BC tại B cắt tia CA tại K. Hạ AE ⊥ BK (E ∈ BK). Chứng minh rằng: AK.AC = EH2, từ đó suy ra BH.HC + BE.EK = AK.AC.
Xem lời giải »
Câu 7:
Chứng minh rằng m + 2014n chia hết cho 2015 khi và chỉ khi n + 2014m chia hết cho 2015.
Xem lời giải »