X

Các dạng bài tập Toán lớp 12

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông


Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng SBD  và mặt phẳng ABCD  bằng 600 . Tính theo a thể tích V của khối chóp S.ABCD.

A. V=a3612 .

B. V=a3
C.V=a366 .
D. V=a362 .

Trả lời:

Media VietJack

SAABCDSABD1 .

Gọi O=ACBD , suy ra BDAO2 .

Từ 1  2 , suy ra BDSAOBDSO

Do SBDABCD=BDSOBD, AOBD , suy ra

600=SBD,ABCD^=SO,AO^=SOA^

Tam giác vuông SAO, ta có SA=AO.tanSOA^=a62 .

Diện tích hình vuông ABCD SABCD=a2 .

Vậy VS.ABCD=13SABCD.SA=a366.  Chọn C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA=a2.  Tính thể tích V của khối chóp S.ABCD

Xem lời giải »


Câu 2:

Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng SBC   bằng 3a.  Tính theo a thể tích V của khối chóp S.ABC

Xem lời giải »


Câu 3:

Cho khối chóp S.ABC có SA vuông góc với đáy, SA=4,  AB=6,  BC=10  CA=8 . Tính thể tích V của khối chóp S.ABC.

Xem lời giải »


Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a , BC=2a . Hai mặt bên SAB  SAD  cùng vuông góc với mặt phẳng đáy ABCD , cạnh SA. Tính theo a thể tích V của khối chóp S.ABCD

Xem lời giải »


Câu 5:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, đường chéo AC=a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa SCD  và đáy bằng 450 . Tính theo a thể tích V của khối chóp S.ABCD.

Xem lời giải »


Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AD=DC=1, AB=2; cạnh bên SA vuông góc với đáy; mặt phẳng SBC  tạo với mặt đáy ABCD  một góc 450 . Tính thể tích V của khối chóp S.ABCD.

Xem lời giải »


Câu 7:

Cho tứ diện ABCD SΔABC=4cm2SΔABD=6cm2AB=3cm. Góc giữa hai mặt phẳng ABC  ABD  bằng 60ο . Tính thể tích V của khối tứ diện đã cho.

Xem lời giải »


Câu 8:

Cho tứ diện ABCD có các cạnh AB,AC và AD đôi một vuông góc với nhau; AB=6a,  AC=7a  AD=4a.  Gọi M, N, P  tương ứng là trung điểm các cạnh BC,  CD,  BD.  Tính thể tích V của tứ diện  AMNP

Xem lời giải »