X

Các dạng bài tập Toán 8

Lý thuyết Tứ giác hay, chi tiết


Lý thuyết Tứ giác hay, chi tiết

Haylamdo biên soạn và sưu tầm Lý thuyết Tứ giác hay, chi tiết Toán lớp 8 sẽ tóm tắt kiến thức trọng tâm về bài học từ đó giúp học sinh ôn tập để nắm vững kiến thức môn Toán lớp 8.

Lý thuyết Tứ giác hay, chi tiết

A. Lý thuyết

1. Định nghĩa tứ giác

Tứ giác ABCD là hình gồm bốn đoạn thẳng AB, BC, CD, DA trong đó bất kì đoạn thẳng nào cũng không cùng nằm trên một đường thẳng.

Lý thuyết Tứ giác | Lý thuyết và Bài tập Toán 8 có đáp án

Chú ý:

   Tứ giác ABCD còn được gọi tên là tứ giác BCDA,ADCB, ... . Các điểm A,B,C,D được gọi là các đỉnh. Các đoạn thẳng AB,BC,CD,DA được gọi là các cạnh.

   Tứ giác ABCD trên hình gọi là tứ giác lồi.

Tứ giác lồi là tứ giác luôn nằm trong một nửa mặt phẳng có bờ là đường thẳng chứa bất kì cạnh nào của tứ giác

2. Tổng các góc của một tứ giác

Định lí: Tổng các góc của một tứ giác bằng 3600.

Lý thuyết Tứ giác | Lý thuyết và Bài tập Toán 8 có đáp án

Tổng quát: Aˆ + Bˆ + Cˆ + Dˆ = 3600.

Ví dụ: Cho tứ giác ABCD trong đó có Aˆ = 600,Cˆ = 1500, Dˆ = 750. Tính số đo của góc Bˆ?

Hướng dẫn:

Lý thuyết Tứ giác | Lý thuyết và Bài tập Toán 8 có đáp án

Theo định lý, tổng các góc của một tứ giác bằng 3600.

Khi đó ta có: Aˆ + Bˆ + Cˆ + Dˆ = 3600.

⇔ 600 + Bˆ + 1500 + 750 = 3600

Bˆ = 3600 - 2850 = 750.

Vậy Bˆ = 750.

B. Bài tập tự luyện

Bài 1: Cho tứ giác ABCD trong đó Aˆ = 730,Bˆ = 1120,Dˆ = 840. Tính số đo góc Cˆ?

Hướng dẫn:

Áp dụng định lí: Tổng các góc của một tứ giác bằng 3600.

Khi đó ta có Aˆ + Bˆ + Cˆ + Dˆ = 3600Cˆ = 3600 - ( Aˆ + Bˆ + Dˆ ) = 3600 - ( 730 + 1120 + 840 )

Cˆ = 3600 - 2690 = 910.

Vậy số đo của góc Cˆ cần tìm là Cˆ = 910.

Bài 2: Cho tứ giác ABCD có Aˆ = 700,Bˆ = 900. Các tia phân giác của các góc C và D cắt nhau tại O. Tính số đo góc CODˆ ?

Hướng dẫn:

Áp dụng định lí: Tổng các góc của một tứ giác bằng 3600.

Bài tập Tứ giác | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có Aˆ + Bˆ + Cˆ + Dˆ = 3600Cˆ + Dˆ = 3600 - ( Aˆ + Bˆ ) = 3600 - ( 700 + 900 )

Cˆ + Dˆ = 2000

Theo giả thiết, ta có OC, OD là các đường phân giác

Khi đó ta có Bài tập Tứ giác | Lý thuyết và Bài tập Toán 8 có đáp án

Cˆ + Dˆ = BCOˆ + OCDˆ + CDOˆ + ODAˆ = 2OCDˆ + 2ODCˆ

⇔ 2( OCDˆ + ODCˆ ) = 2000OCDˆ + ODCˆ = 1000

Xét Δ OCD có OCDˆ + ODCˆ + CODˆ = 1800CODˆ = 1800 - ( OCDˆ + ODCˆ ) = 1800 - 1000 = 800.

Vậy CODˆ = 800.

Xem thêm Lý thuyết, các dạng bài tập Toán lớp 8 có đáp án hay khác: