X

Các dạng bài tập Toán 8

Bài tập Diện tích hình thang chọn lọc, có đáp án


Bài tập Diện tích hình thang chọn lọc, có đáp án

Haylamdo biên soạn và sưu tầm Bài tập Diện tích hình thang chọn lọc, có đáp án Toán lớp 8 tổng hợp bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm bài tập từ đó đạt điểm cao trong bài thi môn Toán lớp 8.

Bài tập Diện tích hình thang chọn lọc, có đáp án

I. Bài tập trắc nghiệm

Bài 1: Hình thang có độ dài đáy lần lượt là 2√ 2 cm, 3cm và chiều cao là 3√ 2 cm. Diện tích của hình thang là ?

   A. 2( 2 + √ 2 )cm2.

   B. 3( 2 + 3/2√ 2 )cm2.

   C. 3( 3 + √ 2 )cm2.

   D. 3( 2 + √ 2 /2 )cm2

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có: S = 1/2( a + b ).h

Khi đó ta có: Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án B.

Bài 2: Hình thang có độ dài đáy lần lượt là 6cm, 4cm và diện tích hình thang đó là 15cm2. Chiều cao hình thang có độ dài là ?

   A. 3cm.   B. 1,5cm

   C. 2cm   D. 1cm

Diện tích của hình thang là S = 1/2( a + b ).h

⇒ ( a + b ).h = 2S ⇔ h = (2S)/(a + b).

Khi đó, chiều cao của hình thang là h = (2.15)/(6 + 4) = 3( cm ).

Chọn đáp án A.

Bài 3: Cho hình bình hành ABCD ( AB//CD ) có AB = CD = 4cm, độ dài đường cao hình bình hành là h = 2cm. Diện tích của hình bình hành là?

   A. 4( cm2 )   B. 8( cm2 )

   C. 6( cm2 )   D. 3( cm2 )

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có : S = a.h

Khi đó ta có: S = 4.2 = 8( cm2 ).

Chọn đáp án B.

Bài 4: Cho hình thang vuông ABCD ( Aˆ = Dˆ = 900 ), trong đó có Cˆ = 450, AB = 2cm, CD = 4cm. Diện tích của hình thang vuông ABCD là

   A. 3( cm2 )   B. 8( cm2 )

   C. 4( cm2 )   D. 6( cm2 )

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Xét hình thang ABCD

Từ B kẻ BH ⊥ CD, khi đó ta được hình chữ nhật ABHD ⇒ AB = DH = 2cm

⇒ HC = CD - DH = 4 - 2 = 2cm.

+ Xét Δ BDC có BH là đường cao đồng thời là đường trung tuyến

⇒ Δ BDC là tam giác cân tại B.

BCDˆ = 450BDCˆ = 450

DBCˆ = 1800 - ( BCDˆ + BDCˆ ) = 1800 - 900 = 900.

⇒ Δ BDC là tam giác vuông cân tại B nên BH = 1/2DC = 2cm.

Do đóBài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D.

Bài 5: Cho tam giác ABC có BC = 16cm ,đường cao AH = 8cm. Gọi M và N lần lượt là trung điểm của AB và AC. Tính diện tích của tứ giác MNCB?

A. 48cm2 B. 40cm2

C. 54cm2 D. 60cm2

Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC.

Suy ra: MN // BC và

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó, tứ giác MNCB là hình thang .

Vì AH = 8cm nên đường cao kẻ từ M đến BC bằng

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Diện tích hình thang MNCB là :

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

Bài 6: Cho tam giác ABC vuông tại A có AB = 6cm và BC = 10cm . Gọi M và N theo thứ tự là trung điểm của AB và BC. Tính diện tích của tứ giác MNCA?

A. 10 cm2 B. 12cm2

C. 15cm2 D. 18cm2

Vì M là trung điểm của AB nên:

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lí py tago vào tam giác ABC có:

BC2 = AB2 + AC2 suy ra: AC2 = BC2 - AB2 = 102 - 62 = 64

Suy ra: AC = 8cm

Xét tam giác ABC có M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC nên: MN// AC và

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: tứ giác MNCA là hình thang vuông.

Diện tích hình thang MNCA là:

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án

Bài 7: Cho tam giác ABC có M, N và P lần lượt là trung điểm của AB, AC và P. Biết đường cao AH = 10cm và BC = 16cm . Tính diện tích tứ giác MNPB?

A. 20cm2 B. 30cm2

C. 40cm2 D. 50cm2

Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC

Suy ra: MN// BC và

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Tương tự, có NP là đường trung bình của tam giác nên: NP // AB

Xét tứ giác MNPB có MN// BC và NP // AB

Suy ra: tứ giác MNPB là bình hành.

Tam giác ABC có đường cao AH = 10cm nên đường cao ứng với cạnh đáy của hình bình hành MNPB là:

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Diện tích hình bình hành MNPB là:

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Bài 8: Cho hình bình hành ABCD có diện tích là 40cm2. Tính diện tích tam giác ABC?

A. 10cm2 B. 15cm2

C. 20cm2 D. 18cm2

Do ABCD là hình bình hành nên: AB = CD và BC = AD

Xét tam giác ABC và tam giác CDA có :

AB = CD

BC = AD

AC chung

⇒ ΔABC = ΔCDA (c.c.c)

Suy ra: SABC = SCDA

Mà SABC + SCDA = SABCD

Do đó

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Bài 9: Cho hình thang ABCD (AB// CD) có AB = 6cm và CD = 10cm. Biết diện tích hình thang ABCD là 60cm2. Tính diện tích tam giác ACD?

A. 37,5cm2 B. 35cm2

C. 30cm2 D. 40cm2

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án A

Bài 10: Cho hình thang ABCD có AB// CD; AB = 10cm , CD = 12cm, đường cao AH = 6cm . Gọi M và N lần lượt là trung điểm của AD và BC. Tính diện tích tứ giác ABNM?

A. 30cm2 B. 29,5cm2

C. 27,5cm2 D.31,5cm2

Xét hình thang ABCD có M và N lần lượt là trung điểm của AD và BC nên MN là đường trung bình của hình thang:

Suy ra: MN// AB// CD và

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: tứ giác MNCD là hình thang.

Vì M là trung điểm của AD và đường cao AH = 6cm nên chiều cao xuất phát từA của hình thang MNCD là:

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Diện tích hình thang ABNM là :

Bài tập Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án D

Xem thêm Lý thuyết, các dạng bài tập Toán lớp 8 có đáp án hay khác: