Bài tập Diện tích hình thang chọn lọc, có đáp án
Bài tập Diện tích hình thang chọn lọc, có đáp án
Haylamdo biên soạn và sưu tầm Bài tập Diện tích hình thang chọn lọc, có đáp án Toán lớp 8 tổng hợp bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm bài tập từ đó đạt điểm cao trong bài thi môn Toán lớp 8.
I. Bài tập trắc nghiệm
Bài 1: Hình thang có độ dài đáy lần lượt là 2√ 2 cm, 3cm và chiều cao là 3√ 2 cm. Diện tích của hình thang là ?
A. 2( 2 + √ 2 )cm2.
B. 3( 2 + 3/2√ 2 )cm2.
C. 3( 3 + √ 2 )cm2.
D. 3( 2 + √ 2 /2 )cm2
Ta có: S = 1/2( a + b ).h
Khi đó ta có:
Chọn đáp án B.
Bài 2: Hình thang có độ dài đáy lần lượt là 6cm, 4cm và diện tích hình thang đó là 15cm2. Chiều cao hình thang có độ dài là ?
A. 3cm. B. 1,5cm
C. 2cm D. 1cm
Diện tích của hình thang là S = 1/2( a + b ).h
⇒ ( a + b ).h = 2S ⇔ h = (2S)/(a + b).
Khi đó, chiều cao của hình thang là h = (2.15)/(6 + 4) = 3( cm ).
Chọn đáp án A.
Bài 3: Cho hình bình hành ABCD ( AB//CD ) có AB = CD = 4cm, độ dài đường cao hình bình hành là h = 2cm. Diện tích của hình bình hành là?
A. 4( cm2 ) B. 8( cm2 )
C. 6( cm2 ) D. 3( cm2 )
Ta có : S = a.h
Khi đó ta có: S = 4.2 = 8( cm2 ).
Chọn đáp án B.
Bài 4: Cho hình thang vuông ABCD ( Aˆ = Dˆ = 900 ), trong đó có Cˆ = 450, AB = 2cm, CD = 4cm. Diện tích của hình thang vuông ABCD là
A. 3( cm2 ) B. 8( cm2 )
C. 4( cm2 ) D. 6( cm2 )
Xét hình thang ABCD
Từ B kẻ BH ⊥ CD, khi đó ta được hình chữ nhật ABHD ⇒ AB = DH = 2cm
⇒ HC = CD - DH = 4 - 2 = 2cm.
+ Xét Δ BDC có BH là đường cao đồng thời là đường trung tuyến
⇒ Δ BDC là tam giác cân tại B.
Mà BCDˆ = 450 ⇒ BDCˆ = 450
⇒ DBCˆ = 1800 - ( BCDˆ + BDCˆ ) = 1800 - 900 = 900.
⇒ Δ BDC là tam giác vuông cân tại B nên BH = 1/2DC = 2cm.
Do đó
Chọn đáp án D.
Bài 5: Cho tam giác ABC có BC = 16cm ,đường cao AH = 8cm. Gọi M và N lần lượt là trung điểm của AB và AC. Tính diện tích của tứ giác MNCB?
A. 48cm2 B. 40cm2
C. 54cm2 D. 60cm2
Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC.
Suy ra: MN // BC và
Do đó, tứ giác MNCB là hình thang .
Vì AH = 8cm nên đường cao kẻ từ M đến BC bằng
Diện tích hình thang MNCB là :
Chọn đáp án A
Bài 6: Cho tam giác ABC vuông tại A có AB = 6cm và BC = 10cm . Gọi M và N theo thứ tự là trung điểm của AB và BC. Tính diện tích của tứ giác MNCA?
A. 10 cm2 B. 12cm2
C. 15cm2 D. 18cm2
Vì M là trung điểm của AB nên:
Áp dụng định lí py tago vào tam giác ABC có:
BC2 = AB2 + AC2 suy ra: AC2 = BC2 - AB2 = 102 - 62 = 64
Suy ra: AC = 8cm
Xét tam giác ABC có M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC nên: MN// AC và
Suy ra: tứ giác MNCA là hình thang vuông.
Diện tích hình thang MNCA là:
Chọn đáp án
Bài 7: Cho tam giác ABC có M, N và P lần lượt là trung điểm của AB, AC và P. Biết đường cao AH = 10cm và BC = 16cm . Tính diện tích tứ giác MNPB?
A. 20cm2 B. 30cm2
C. 40cm2 D. 50cm2
Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC
Suy ra: MN// BC và
Tương tự, có NP là đường trung bình của tam giác nên: NP // AB
Xét tứ giác MNPB có MN// BC và NP // AB
Suy ra: tứ giác MNPB là bình hành.
Tam giác ABC có đường cao AH = 10cm nên đường cao ứng với cạnh đáy của hình bình hành MNPB là:
Diện tích hình bình hành MNPB là:
Chọn đáp án C
Bài 8: Cho hình bình hành ABCD có diện tích là 40cm2. Tính diện tích tam giác ABC?
A. 10cm2 B. 15cm2
C. 20cm2 D. 18cm2
Do ABCD là hình bình hành nên: AB = CD và BC = AD
Xét tam giác ABC và tam giác CDA có :
AB = CD
BC = AD
AC chung
⇒ ΔABC = ΔCDA (c.c.c)
Suy ra: SABC = SCDA
Mà SABC + SCDA = SABCD
Do đó
Chọn đáp án C
Bài 9: Cho hình thang ABCD (AB// CD) có AB = 6cm và CD = 10cm. Biết diện tích hình thang ABCD là 60cm2. Tính diện tích tam giác ACD?
A. 37,5cm2 B. 35cm2
C. 30cm2 D. 40cm2
Chọn đáp án A
Bài 10: Cho hình thang ABCD có AB// CD; AB = 10cm , CD = 12cm, đường cao AH = 6cm . Gọi M và N lần lượt là trung điểm của AD và BC. Tính diện tích tứ giác ABNM?
A. 30cm2 B. 29,5cm2
C. 27,5cm2 D.31,5cm2
Xét hình thang ABCD có M và N lần lượt là trung điểm của AD và BC nên MN là đường trung bình của hình thang:
Suy ra: MN// AB// CD và
Suy ra: tứ giác MNCD là hình thang.
Vì M là trung điểm của AD và đường cao AH = 6cm nên chiều cao xuất phát từA của hình thang MNCD là:
Diện tích hình thang ABNM là :
Chọn đáp án D