Cách phân tích đa thức thành nhân tử bằng phương pháp nhóm nhiều hạng tử
Cách phân tích đa thức thành nhân tử bằng phương pháp nhóm nhiều hạng tử
Tài liệu Cách phân tích đa thức thành nhân tử bằng phương pháp nhóm nhiều hạng tử Toán lớp 8 sẽ tóm tắt kiến thức trọng tâm về bài học từ đó giúp học sinh ôn tập để nắm vững kiến thức môn Toán lớp 8.
A. Phương pháp giải
+ Ta vận dụng phương pháp nhóm hạng tử khi không thể phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung hay bằng phương pháp dùng hằng đẳng thức.
+ Ta nhận xét để tìm cách nhóm hạng tử một cách thích hợp (có thể giao hoán và kết hợp các hạng tử để nhóm) sao cho sau khi nhóm, từng nhóm đa thức có thế phân tích được thành nhân tử bằng phương pháp đặt nhân tử chung, bằng phương pháp dùng hằng đẳng thức. Khi đó đa thức mới phải xuất hiện nhân tử chung.
• Chú ý.
+ Với một đa thức, có thể có nhiều cách nhóm các hạng tử một cách thích hợp.
+ Khi phân tích đa thức thành nhân tử ta phải phân tích đến cuối cùng (không còn phân tích được nữa).
+ Dù phân tích bằng cách nào thì kết quả cũng là duy nhất.
+ Khi nhóm các hạng tử, phải chú ý đến dấu của đa thức.
B. Ví dụ minh họa
Ví dụ 1. Phân tích đa thức thành nhân tử: 2x2y +2x + 4xy + x2 + 2y + 1
A. (x+ 1)2 . (2y + 1).
B. (x - 1)2 . (2y - 1).
C. (x2 + x + 1). (2y + 1).
D. Đáp án khác
Lời giải
Ta có:
2x2y +2x + 4xy + x2 + 2y + 1
= ( 2x2y + 4xy + 2y ) +( x2 + 2x + 1 )
= 2y. (x2 + 2x + 1) + (x2 + 2x + 1)
= 2y ( x+ 1)2 + (x + 1)2
= (x+ 1)2 . (2y + 1).
Chọn A.
Ví dụ 2. Phân tích đa thức x3 + 2x2 + 2x + 1 thành nhân tử
A. (x + 1)(x2 + x - 1)
B. (x + 1)(x2 + x + 1)
C. (x - 1)(x2 - x - 1)
D. Đáp án khác
Lời giải
Ta có
x3 + 2x2 + 2x + 1
= (x3 + 1) + (2x2 + 2x)
= (x + 1)(x2 - x + 1) + 2x(x + 1)
= (x + 1)(x2 - x + 1 + 2x)
= (x + 1)(x2 + x + 1)
Chọn B.
Ví dụ 3. Phân tích đa thức sau thành nhân tử: x2 - 2x - 4y2 - 4y
A. ( x+ 2y). (x- 2y – 2)
B. ( x- 2y). (x+2y+ 2)
C. (x + 2y – 2). (x – 2y)
D. (x+ 2y). (x- 2y + 2)
Lời giải
x2 - 2x - 4y2 - 4y = (x2 - 4y2) - (2x + 4y)
= (x - 2y)(x + 2y) - 2(x + 2y)
= (x + 2y)(x - 2y - 2)
Chọn A
Ví dụ 4. Phân tích đa thức thành nhân tử 3x2 - 3xy - 5x + 5y
A. (x+ 3y). (x- 5)
B. ( 3x+ 5). (x- y)
C. ( 3x- y). ( x- 5)
D. ( 3x – 5). (x – y)
Lời giải
3x2 - 3xy - 5x + 5y
= (3x2 - 3xy) - (5x - 5y)
= 3x(x - y) - 5(x - y)
= (3x - 5)(x - y)
Chọn D.
C. Bài tập trắc nghiệm
Câu 1. Phân tích đa thức thành nhân tử x2 + 7x - y2 + 7y
A. (x+ y) . (x – y + 7)
B. (x- y). (x+ y+ 7)
C. (x- y). (x+ y- 7)
D. (x + y). (x- y- 7)
x2 + 7x - y2 + 7y = (x2 - y2) + (7x + 7y)
= (x + y).(x - y) + 7(x + y)
= (x + y).(x - y + 7)
Chọn A.
Câu 2. Phân tích đa thức thành nhân tử x2 - y2 + 3x + 3y
A.( x+ 3). ( x+ y- 3)
B. (x – y). (x+ y+ 3)
C.(x+ y). (x – y+ 3)
D. Đáp án khác
x2 - y2 + 3x + 3y = (x2 - y2) + (3x + 3y)
= (x + y).(x - y) + 3(x + y)
= (x + y).(x - y + 3)
Chọn C.
Câu 3. Phân tích đa thức thành nhân tử x2 + 4xy + 4y2 - 49
A. ( x+ 2y+ 7). (x- 2y – 7)
B. ( x+ 2y – 7). (x – 2y + 7)
C. ( x – 2y – 7). (x + 2y – 7)
D. (x + 2y + 7). (x + 2y – 7)
x2 + 4xy + 4y2 - 49 = (x2 + 4xy + 4y2) - 49
= (x + 2y)2 - 72 = (x + 2y + 7).(x + 2y - 7)
Chọn D
Câu 4. Phân tích đa thức thành nhân tử 3x2 - xy + 3x - y
A. (3x + 1).(x- y)
B. (3x + y).(x- 1)
C. ( 3x – y). (1- x)
D. (3x – y). (x+ 1)
3x2 - xy + 3x - y = (3x2 - xy) + (3x - y)
= x(3x - y) + (3x - y) = (3x - y).(x + 1)
Chọn D.
Câu 5. Phân tích đa thức 4x2 + 8xy - 4y - 1 thành nhân tử
A.(2x – 1). (2x + 1+ 4y)
B. (2x + 1+ 4y) .(4y – 1)
C. ( 2x + 1). ( 2x – 1- 4y)
D. Đáp án khác
4x2 + 8xy - 4y - 1 = (4x2 - 1) + (8xy - 4y)
= (2x + 1).(2x - 1) + 4y(2x - 1)
= (2x - 1).(2x + 1 + 4y)
Chọn A.
Câu 6. Phân tích đa thức x3 - 4 + x2 - 4x thành nhân tử
A.(x+ 4). (x+ 1). (x – 1)
B. ( x+ 2). (x- 2). (x – 1)
C. (x+ 2). (x – 2).( x + 1)
D. (x+ 1). (x- 1). (x+ 2)
x3 - 4 + x2 - 4x = (x3 - 4x) + (x2 - 4)
= x(x2 - 4) + (x2 - 4)
= (x2 - 4)(x + 1) = (x + 2).(x - 2).(x + 1)
Chọn C.
Câu 7. Phân tích đa thức thành nhân tử x2 + ax - y2 + ay
A.(x- y). (x+ y+ a)
B. (x+ y). (x- y+ a)
C.(x+ y). ( x+ y+ a)
D. (x – y). (x- y- a)
x2 + ax - y2 + ay = (x2 - y2) + (ax + ay)
= (x + y).(x - y) + a(x + y)
= (x + y).(x - y + a)
Chọn B
Câu 8. Phân tích đa thức 4x2 + 2xy - 1 + y thành nhân tử
A.( x- 1).(2x + y+ 1)
B.( x + y+ 1). (2x – 1)
C.( 2x + y). (2x -1)
D.(2x + 1). (2x – 1 + y)
4x2 + 2xy - 1 + y = (4x2 - 1) + (2xy + y)
= (2x + 1).(2x - 1) + y.(2x + 1)
= (2x + 1).(2x - 1 + y)
Chọn D.
Câu 9. Phân tích đa thức thành nhân tử x2 - 9 + 2xy + y2
A.(x + y+ 3). (x+ y- 3)
B.(x + y+ 3). (x- y)
C.(x- y- 3). (x+ y)
D.(x – y- 3). (x – y)
x2 - 9 + 2xy + y2 = (x2 + 2xy + y2) - 9
= (x + y)2 - 32 = (x + y + 3).(x + y - 3)
Chọn B.
Câu 10. Phân tích đa thức xy + xz – 5y – 5z thành nhân tử
A. ( x- 5).(y + z)
B. (x + 5). ( y – z)
C. ( x+ 5). (y + z)
D. (x - y). ( z- 5)
Ta có: xy + xz – 5y – 5z = ( xy - 5y) + (xz – 5z)
= y.( x – 5) + z( x – 5) = ( x- 5). (y + z)
Chọn A.