X

Các dạng bài tập Toán 8

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki


Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Tài liệu Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki Toán lớp 8 sẽ tóm tắt kiến thức trọng tâm về bài học từ đó giúp học sinh ôn tập để nắm vững kiến thức môn Toán lớp 8.

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Dạng bài: Sử dụng bất đẳng thức Cô – si, bất đẳng thức Bunhiacopxki

A. Phương pháp giải

a) Bất đẳng thức Cô – si

Cho hai số không âm a, b, ta luôn có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

, dấu đẳng thức xảy ra khi và chỉ khi a=b.

Mở rộng:

a. Với các số a, b, c không âm, ta luôn có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Dấu đẳng thức xảy ra khi và chỉ khi a=b=c.

b. Với n số Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki không âm, ta luôn có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Dấu đẳng thức xảy ra khi và chỉ khi Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

b) Bất đẳng thức Bunhiacopxki

Cho a1, a2, b1, b2 là những số thực, ta có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Dấu đẳng thức xảy ra khi

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Mở rộng: Với các số thực a1, a2, b1, b2, a3, b3, ta luôn có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Dấu đẳng thức xảy ra khi

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

B. Ví dụ minh họa

Câu 1: Cho a,b>0. Chứng minh rằng:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Lời giải:

Sử dụng bất đẳng thức Cô-si:

  • Cho cặp số a, b, ta được:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

  • Cho cặp số Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki, ta được:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Nhân hai vế tương ứng của (1), (2), ta được:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Dấu bằng xảy ra khi:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Câu 2: Cho ba số dương a, b, c. Chứng minh rằng:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Giải.

Ta có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Dấu đẳng thức xảy ra khi:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Câu 3: Chứng minh rằng với a, b, c tùy ý ta luôn có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Lời giải:

Ta có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Lấy căn bậc hai của hai vế, ta đi đến:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

C. Bài tập tự luyện

Câu 1: Cho 3 số dương x, y, z tùy ý. Chứng minh rằng:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Câu 2: Cho 3 số dương x, y, z thỏa mãn: xyz=1. Chứng minh rằng:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Câu 3: Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Câu 4: Cho Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki. Chứng minh rằng:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Câu 5: Chứng minh rằng với mọi số thực x, y luôn có:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Câu 6: Hai số x, y thỏa mãn Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki. Chứng minh rằng

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Câu 7: Cho các số không âm a, y thỏa mãn Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki. Chứng minh rằng:

Chứng minh bất đẳng thức bằng Cô-si, Bunhiacopxki

Xem thêm Lý thuyết, các dạng bài tập Toán lớp 8 có đáp án hay khác: