X

Các dạng bài tập Toán 8

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác


Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Tài liệu Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác Toán lớp 8 sẽ tóm tắt kiến thức trọng tâm về bài học từ đó giúp học sinh ôn tập để nắm vững kiến thức môn Toán lớp 8.

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Dạng bài: Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

A. Phương pháp giải

+) Vận dụng định lí Ta-lét.

+) Sử dụng tính chất của tỉ lệ thức.

B. Ví dụ minh họa

Câu 1: Cho góc nhọn xOy. Trên tia Ox lấy hai điểm D, E. Một đường thẳng d1 qua D cắt tia Oy tại điểm F, đường thẳng d2 đi qua E và song song với d1, cắt tia Oy tại điểm G. Đường thẳng d3 qua G và song song với EF, cắt tia Ox tại điểm H.

Chứng minh: Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Lời giải:

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Câu 2: Cho tam giác ABC, M là một điểm bất kì trên BC. Các đường song song với AM vẽ từ B và C cắt AC, AB tại N và P. Chứng minh Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Lời giải:

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giácÁp dụng định lý Talet cho tam giác BNC (AM//BN) :

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

và tam giác CPB (AM//CP):

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Lấy vế với vế của (1)+(2) ta được

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Câu 3: Cho hình thang ABCD (AB // CD, AB < CD). Gọi trung điểm của các đường chéo AC, BD theo thứ tự N và M. Chứng minh rằng:

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Lời giải:

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Gọi H là trung điểm AD, N là trung điểm AC HN là đường trung bình của ΔADC

HN // DC

Vì H là trung điểm AD, M là trung điểm BD HM là đường trung bình trong ΔABD

HM // AB

Mặt khác AB // CD(gt) HM // HN // AB H, M, N thẳng hàng và MN // AB.

b) Ta có: HN là đường trung bình trong ΔADC(cmt)

HN =Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác CD

Có: HM là đường trung bình trong ΔABD

HM = Chứng minh các hệ thức bằng định lí Ta-lét trong tam giácAB

Ta có: MN = HN - HM = Chứng minh các hệ thức bằng định lí Ta-lét trong tam giácCD - Chứng minh các hệ thức bằng định lí Ta-lét trong tam giácAB = Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

C. Bài tập tự luyện

Câu 1: Cho biết Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác. Chứng minh rằng:

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Câu 2: Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB và AC theo thứ tự ở D và E. Chứng minh rằng: Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Câu 3: Cho ΔABC. Lấy điểm D thuộc đoạn AB, điểm E thuộc tia đối của tia CA sao cho DB=CE, DE cắt BC tại M. Chứng minh Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác.

Câu 4: Cho ΔABCAD là đường trung tuyến, G là trọng tâm. Qua G kẻ đường thẳng d cắt AB, AC thứ tự tại M, N. Chứng minh:

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Câu 5: Cho hình thang ABCD (AB//CD). Trên tia đối của tia BA lấy điểm E sao cho BE = CD. Gọi giao điểm của AC với DB và DE theo thứ tự là I và K. Chứng minh hệ thức Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Chứng minh các hệ thức bằng định lí Ta-lét trong tam giác

Xem thêm Lý thuyết, các dạng bài tập Toán lớp 8 có đáp án hay khác: