X

Các dạng bài tập Toán 8

Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét hay, chi tiết


Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét hay, chi tiết

Haylamdo biên soạn và sưu tầm Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét hay, chi tiết Toán lớp 8 sẽ tóm tắt kiến thức trọng tâm về bài học từ đó giúp học sinh ôn tập để nắm vững kiến thức môn Toán lớp 8.

Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét hay, chi tiết

A. Lý thuyết

1. Định lý đảo

Nếu một đường thẳng cắt hai cạnh một tam giác và định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Tổng quát: Δ ABC, B' ∈ AB, C' ∈ AC; AB'/BB' = AC'/C'C

Suy ra: B'C'//BC.

Ví dụ: Trong Δ ABC có AB = 6cm, AC = 9cm. Lấy trên cạnh AB điểm B', trên cạnh AC lấy điểm C' sao cho AB' = 2cm, AC' = 3cm. Chứng minh B'C'//BC.

Hướng dẫn:

Trong Δ ABC, B' ∈ AB, C' ∈ AC.

Ta có

Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: B'C'//BC.

2. Hệ quả của định lý Ta – lét

Nếu một đường thẳng cắt hai cạnh còn lại của một của một tam giác và song song với các cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh còn lại của tam giác đã cho.

Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Tổng quát : Δ ABC, B'C'//BC; B' ∈ AB, C' ∈ AC

Ta có:Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Chú ý: Hệ quả trên vẫn đúng cho trường hợp đường thẳng song song với một cạnh và cắt phần kéo dài của hai cạnh còn lại.

Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Ví dụ: Trong Δ ABC có AB = 8cm và B'C'//BC. Lấy trên cạnh AB điểm B', trên cạnh AC lấy điểm C' sao cho AB' = 2cm, AC' = 3cm. Tính độ dài cạnh AC.

Hướng dẫn:

Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng hệ quả trên ta có: Δ ABC, B'C'//BC; B' ∈ AB, C' ∈ AC

Lý thuyết Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Khi đó ta có: AB'/AB = AC'/AC ⇔ 2/8 = 3/AC ⇒ AC = (3.8)/2 = 12( cm )

B. Bài tập tự luyện

Bài 1: Tính độ dài x, y trong các hình bên

Bài tập Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án Bài tập Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Hướng dẫn:

a) Áp dụng hệ quả của định lí Ta – lét ta có:

DE//BC ⇒ BC/DE = AB/AD hay x/8 = 28,5/9,5

⇔ x = (8.28,5)/9,5 = 456/19 ≈ 31,58

b) Ta có: A'B'//AB vì cùng vuông góc AA'

Áp dụng hệ quả của định lí Ta – lét ta có:

A'B'//AB ⇒ AB/A'B' = AO/A'O hay x/4,2 = 6/3 ⇔ x = 8,4

Áp dụng định lí Py – ta – go với Δ OAB ta có:

OB2 = AB2 + OA2 ⇒ y = √(8,42 + 62) ≈ 10,32

Bài 2: Cho hình thang ABCD ( AB//CD ) có O là giao điểm của hai đường chéo. Đường thẳng qua O song song hai đáy và cắt AD, BC lần lượt tại E và F. Chứng minh OE = OF.

Hướng dẫn:

Bài tập Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng hệ quả của định lí Ta – lét cho OE//DC,

OF//DC và AB//DC ta được:

Bài tập Định lí đảo và hệ quả của định lí Ta-lét | Lý thuyết và Bài tập Toán 8 có đáp án

Điều phải chứng minh.

Xem thêm Lý thuyết, các dạng bài tập Toán lớp 8 có đáp án hay khác: