Bài tập Hình chữ nhật chọn lọc, có đáp án
Bài tập Hình chữ nhật chọn lọc, có đáp án
Haylamdo biên soạn và sưu tầm Bài tập Hình chữ nhật chọn lọc, có đáp án Toán lớp 8 tổng hợp bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm bài tập từ đó đạt điểm cao trong bài thi môn Toán lớp 8.
I. Bài tập trắc nghiệm
Bài 1: Chọn đáp án đúng nhất trong các đáp án sau?
A. Hình chữ nhật là tứ giác có bốn cạnh bằng nhau.
B. Hình chữ nhật là tứ giác có bốn góc vuông.
C. Hình chữ nhật là tứ giác có hai góc vuông.
D. Các phương án trên đều không đúng.
Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông.
Chọn đáp án B.
Bài 2: Tìm câu sai trong các câu sau
A. Trong hình chữ nhật có hai đường chéo bằng nhau.
B. Trong hình chữ nhật có hai đường chéo cắt nhau tại trung điểm mỗi đường.
C. Trong hình chữ nhật có hai cạnh kề bằng nhau.
D. Trong hình chữ nhật, giao của hai đường chéo là tâm của hình chữ nhật đó
Định lý trong hình chữ nhật
+ Hình chữ nhật có hai đường chéo bằng nhau.
+ Hình chữ nhật có hai đường chéo cắt nhau tại trung điểm mỗi đường.
+ Giao của hai đường chéo của hình chữ nhật là tâm của hình chữ nhật đó.
+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông
⇒ Đáp án C sai.
Chọn đáp án C.
Bài 3: Các dấu hiệu nhận biết sau, dấu hiệu nào nhận biết chưa đúng?
A. Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình chữ nhật.
B. Tứ giác có ba góc vuông là hình chữ nhật.
C. Hình thang cân có một góc vuông là hình chữ nhật.
D. Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.
Dấu hiệu nhận biết hình chữ nhật:
+ Tứ giác có ba góc vuông là hình chữ nhật.
+ Hình thang cân có một góc vuông là hình chữ nhật.
+ Hình bình hành có một góc vuông là hình chữ nhật.
+ Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.
⇒ Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường chưa đủ điều kiện để là hình chữ nhật.
Chọn đáp án A.
Bài 4: Khoanh tròn vào phương án sai
A. Trong tam giác vuông đường trung tuyến ứng với cạnh huyền và bằng nửa cạnh huyền.
B. Trong tam giác, đường trung tuyến với với một cạnh và bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.
C. Trong tam giác vuông, đường trung tuyến ứng với cạnh góc vuông không bằng cạnh ấy.
D. Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì vuông góc với cạnh huyền.
Định lý
+ Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
+ Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.
Chọn đáp án D.
Bài 5: Trong hình chữ nhật có kích thước lần lượt là 5cm và 12cm. Độ dài đường chéo của hình chữ nhật là ?
A. 17cm B. 13cm
C. √ 119 cm D. 12cm
Độ dài của đường chéo hình chữ nhật bằng căn bậc hai tổng hai bình phương của hai kích thước hình chữ nhật
Do đó, độ dài đường chéo là √ (52 + 122) = 13( cm )
Chọn đáp án B.
Bài 6: Cho hình chữ nhật ABCD có AB = 6cm và đường chéo BD = 10cm. Tính BC?
A. 8cm B. 6cm
C. 7cm D. 9cm
Vì ABCD là hình chữ nhật nên AC = BD = 10cm.
Áp dụng định lí Pytago vào tam giác ABC ta có:
AC2 = AB2 + BC2
Suy ra: BC2 = AC2 - AB2 = 102 – 62 = 64
Nên BC = 8 cm
Chọn đáp án A
Bài 7: Cho tam giác ABC vuông tại B, gọi M là trung điểm của AC. Biết AB = 3cm, BC = 4cm. Tính BM?
A. 2cm B. 3cm
C. 2,5cm D. 3,5cm
Áp dụng định lí Pytago vào tam giác vuông ABC ta có:
AC2 = AB2 + BC2 = 32 + 42 = 25
Suy ra: AC = 5cm
Tam giác ABC vuông tại B có BM là đường trung tuyến ứng với cạnh huyền AC nên:
Chọn đáp án
Bài 8: Cho hình thang vuông ABCD có ∠A = ∠D = 90o. Gọi M là trung điểm của AC và BM = 1/2 AC. Tìm khẳng định sai?
A. AC = BD
B. Tứ giác ABCD là hình chữ nhật
C. M là trung điểm của BD
D. AD = AB
+ Xét tam giác ABC có đường trung tuyến BM và BM = 1/2 AC
Suy ra: tam giác ABC vuông tại B: ∠B = 90o
* Xét tứ giác ABCD có ∠A = ∠D = ∠B = 90o
Suy ra: tứ giác ABCD là hình chữ nhật (dấu hiệu nhận biết)
Theo tính chất của hình chữ nhật ta có:
AC = BD; AB = CD; AD = BC
Chọn đáp án D
Bài 9: Cho tam giác ABC vuông tại A . Gọi M , N, P lần lượt là trung điểm của AB; AC và BC. Hỏi tứ giác AMPN là hình gì? Chọn khẳng định đúng nhất?
A. Hình bình hành
B. Hình thang cân
C. Hình thang vuông
D. Hình chữ nhật
* Ta có: M và P lần lượt là trung điểm của AB và BC nên MP là đường trung bình của tam giác.
Từ (1) và (2)suy ra: MP = AN .
* Xét tứ giác AMPN có: MP// AN ( vì MP // AC) và MP = AN
Suy ra: tứ giác AMPN là hình bình hành.
* Lại có ∠BAC = 90o ( giả thiết)
Suy ra: tứ giác AMPN là hình chữ nhật.
Chọn đáp án D
Bài 10: Cho hình thang vuông ABCD vuông tại A và D, có AB = 6cm; DC = 9cm ; BC = 5cm. Tính AD?
A. 3cm B. 4cm
C. 5cm D. 6cm
Kẻ BH vuông góc với CD tại H.
* xét tứ giác ABHD có: ∠A = ∠D = ∠H
Suy ra: tứ giác ABHD là hình chữ nhật
⇒ DH = AB = 6 (tính chất hình chữ nhật )
* HC = CD - DH = 9 – 6 = 3cm
* Áp dụng định lí Pytago vào tam giác vuông BCH có:
BH2 + HC2 = BC2
Suy ra: BH2 = BC2 – HC2 = 52 – 32 = 16
Nên BH = 4cm
* Vì ABHD là hình chữ nhật nên AD = BH = 4cm
Chọn đáp án B