Bài tập Khái niệm hai tam giác đồng dạng chọn lọc, có đáp án
Bài tập Khái niệm hai tam giác đồng dạng chọn lọc, có đáp án
Tài liệu Bài tập Khái niệm hai tam giác đồng dạng chọn lọc, có đáp án Toán lớp 8 sẽ tóm tắt kiến thức trọng tâm về bài học từ đó giúp học sinh ôn tập để nắm vững kiến thức môn Toán lớp 8.
I. Bài tập trắc nghiệm
Bài 1: Ta có Δ MNP ∼ Δ ABC thì
A. MN/AB = MP/AC
B. MN/AB = MP/BC
C. MN/AB = NP/AC
D. MN/BC = NP/AC
Ta có: Δ MNP ∼ Δ ABC ⇒ MN/AB = NP/BC = MP/AC
Chọn đáp án A.
Bài 2: Cho Δ ABC ∼ Δ A'B'C' có AB = 3A'B'. Kết quả nào sau đây sai?
A. Aˆ = A'ˆ; Bˆ = B'ˆ
B. A'C' = 1/3AC
C. AC/BC = A'C'/B'C' = 3
D. AB/A'B' = AC/A'C' = BC/B'C'
Ta có: Δ ABC ∼ Δ A'B'C' ⇒
Đáp án C sai.
Chọn đáp án C.
Bài 3: Cho Δ ABC ∼ Δ A'B'C' có AB/A'B' = 2/5. Biết hiệu số chu vi của Δ A'B'C' và Δ ABC là 30cm. Phát biểu nào sau đây đúng?
A. Chu vi của Δ ABC là 20cm, chu vi của Δ A'B'C' là 50cm.
B. Chu vi của Δ ABC là 50cm, chu vi của Δ A'B'C' là 20cm.
C. Chu vi của Δ ABC là 45cm, chu vi của Δ A'B'C' là 75cm.
D. Cả 3 đáp án đều sai.
Ta có: Δ ABC ∼ Δ A'B'C'
Khi đó
Mà PA'B'C' - PABC = 30cm.
Suy ra
Vậy chu vi của Δ ABC là 20cm, chu vi của Δ A'B'C' là 50cm.
Chọn đáp án A.
Bài 4: Cho Δ ABC có AB = 8cm,AC = 6cm,BC = 10cm. Tam giác A'B'C' đồng dạng với tam giác ABC có độ dài cạnh lớn nhất là 25 cm. Tính độ dài các cạnh còn lại của Δ A'B'C' ?
A. 4cm; 3cm B. 7,5cm; 10cm
C. 4,5cm; 6cm D. 15cm; 20cm
Ta có: Δ ABC ∼ Δ A'B'C'
Chọn đáp án D.
Bài 5: Cho Δ ABC ∼ Δ DEF có tỉ số đồng dạng là k = 3/5, chu vi của Δ ABC bằng 12cm. Chu vi của Δ DEF là?
A. 7,2cm B. 20cm
C. 3cm D. 17/3cm
Ta có: Δ ABC ∼ Δ DEF
Chọn đáp án B.
Bài 6: Cho hai tam giác ABC và MNP đồng dạng với nhau. Biết và chu vi tam giác ABC là 60cm . Tính chu vi tam giác MNP?
A. 180cm B. 20cm
C. 30cm D. 57cm
Do tam giác ABC đồng dạng với tam giác MNP nên:
Theo tính chất của dãy tỉ số bằng nhau ta có:
Vậy
Chọn đáp án A
Bài 7: Cho hai tam giác ABC và MNP có:
Tìm khẳng định đúng
A. Hai tam giác ABC và MNP đồng dạng với nhau.
B. Chưa thể kết luận hai tam giác này đồng dạng.
C. ∠C ≠ ∠P
D. Tất cả sai.
Tổng ba góc trong 1 tam giác bằng 180o nên :
Do đó, hai tam giác ABC và MNP đồng dạng với nhau
Chọn đáp án A
Bài 8: Cho tam giác ABC, gọi M, N và P theo thứ tự là trung điểm của AB, AC và BC. Khi đó tam giác AMN đồng dạng với tam giác nào ?
A. ΔAMC B. ΔABC
C. ΔABP D. ΔAPC
Xét tam giác ABC có M và N lần lượt là trung điểm của AB và AC nên MN là đường trung bình của tam giác ABC
Suy ra: MN // B C
Do đó, tam giác AMN đồng dạng với tam giác ABC ( định lí)
Chọn đáp án B
Bài 9: Cho tam giác ABC, trên đoạn thẳng AB và AC lấy các điểm M và N sao cho AM = 6cm; MB = 8cm; AN = 3cm và AC = 7cm. Tìm khẳng định sai ?
A.
B. Hai tam giác AMN và ABC đồng dạng với nhau
C. MN// BC
D. Tam giác AMC đồng dạng với tam giác ABN.
Ta có: NC = AC – AN = 7 – 3 = 4cm
Vì
nên MN // BC (định lí Ta let đảo)
Suy ra: Tam giác AMN đồng dạng với tam giác ABC.
Ta có:
Chọn đáp án D
Bài 10: Cho 2 tam giác ABC và MNP đồng dạng với nhau. Biết chu vi tam giác ABC là 40cm; AB = 4cm; MN = 10cm . Tính chu vi tam giác MNP?
A. 50cm B. 60cm
C. 100cm D. 80cm
Vì tam giác ABC đồng dạng với tam giác MNP nên;
Theo tính chất dãy tỉ số bằng nhau ta có:
Chọn đáp án C