Cách chứng minh tứ giác là hình thoi hay, chi tiết
Cách chứng minh tứ giác là hình thoi hay, chi tiết
Tài liệu Cách chứng minh tứ giác là hình thoi hay, chi tiết Toán lớp 8 sẽ tóm tắt kiến thức trọng tâm về bài học từ đó giúp học sinh ôn tập để nắm vững kiến thức môn Toán lớp 8.
A. Phương pháp giải
Nhận dạng hình thoi bằng một trong hai cách sau:
Cách 1: Chứng minh tứ giác có bốn cạnh bằng nhau.
Cách 2: Chứng minh tứ giác là hình bình hành có thêm một trong các dấu hiệu: hai cạnh kề bằng nhau, hai đường chéo vuông góc hoặc có một đường chéo là đường phân giác của một góc.
B. Ví dụ minh họa
Ví dụ 1. Chứng minh rằng các trung điểm bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi.
Giải
Xét hình chữ nhật ABCD có M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD và DA, ta phải chứng minh MNPQ là hình thoi.
Vì ABCD là hình chữ nhật nên . (1)
Áp dụng tính chất về cạnh và giả thiết vào hình chữ nhật ABCD, ta được
Từ (1) và (2) suy ra bốn tam giác vuông MAQ, MBN, PCN, PDQ bằng nhau nên bốn cạnh tương ứng bằng nhau là MN = NP = PQ = QM. Tứ giác MNPQ có bốn cạnh bằng nhau nên nó là hình thoi.
Ví dụ 2. Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Chứng minh rằng tứ giác AGCH là hình thoi.
Giải
Gọi O là giao điểm của AC và BD thì tại O theo tính chất về đường chéo của hình thoi.
Áp dụng định nghĩa, tính chất về góc và giả thiết vào hình thoi ABCD, thu được:
Điều này chứng tỏ tam giác AGH có đường cao AO vừa là đường phân giác nên nó cân tại A suy ra HO = OG. (2)
Áp dụng tính chất về đường chéo vào hình thoi ABCD ta được AO = OC. (3)
Từ (1), (2) và (3) ta có tứ giác AGCH là hình bình hành có đường chéo AC là phân giác của góc HAG nên nó là hình thoi.
C. Bài tập vận dụng
Câu 1. Cho các hình sau, chọn khẳng định đúng.
A. Cả ba hình đều là hình thoi.
B. Hình 1 và hình 2 là hình thoi.
C. Chỉ hình 1 là hình thoi.
D. Cả ba hình đều không phải hình thoi.
Câu 2. Hình thoi không có tính chất nào dưới đây?
A. Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
B. Hai đường chéo là các đường phân giác của các góc của hình thoi.
C. Hai đường chéo bằng nhau.
D. Hai đường chéo vuông góc với nhau.
Câu 3. Cho hình bình hành ABCD có AD = 2AB. Gọi E là chân đường vuông góc kẻ từ C đến đường thẳng AB, M là trung điểm của AD, F là chân đường vuông góc kẻ từ M đến CE và MF cắt BC ở N. Tứ giác MNCD là hình gì?
A. Hình thoi
B. Hình bình hành
C. Hình chữ nhật
D. Cả A, B, C đều sai
Câu 4. Cho hình bình hành ABCD có DC = 2BC. Gọi E, F là trung điểm của AB, DC. Gọi AF cắt DE tại I, BF cắt CE tại K. Tứ giác AEFD là hình gì?
A. Hình thoi
B. Hình bình hành
C. Hình chữ nhật
D. Cả A, B, C đều sai
Câu 5. Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D. Tứ giác AMBM’ là hình gì?
A. Hình thoi.
B. Hình chữ nhật.
C. Hình bình hành.
D. Hình thang.
Câu 6. Cho tam giác ABC. Trên các cạnh AB và AC lần lượt lấy hai điểm D và E sao cho BD = CE. Gọi M, N, P, Q thứ tự là trung điểm của BE, CD, DE và BC. Chọn câu đúng nhất.
A. PQ vuông góc với MN.
B. Tứ giác PMQN là hình thoi.
C. Cả A, B đều đúng.
D. Cả A, B đều sai.
Câu 7. Trung điểm các cạnh của một hình thang cân là các đỉnh của hình gì?
A. Hình thoi.
B. Hình chữ nhật.
C. Hình bình hành.
D. Hình thang.
Câu 8. Cho hình bình hành ABCD có . Gọi M, N lần lượt là trung điểm của AD và BC. Tứ giác AMCN là hình gì?
A. Hình thoi.
B. Hình chữ nhật.
C. Hình bình hành.
D. Hình thang.
Câu 9. Cho tam giác ABC cân tại A, các đường cao BD và CE. Gọi M là trung điểm của BC, I và K lần lượt là chân đường vuông góc kẻ từ M đến AB và AC, H là trung điểm của DE. Tứ giác MIHK là hình gì?
A. Hình thoi.
B. Hình chữ nhật.
C. Hình bình hành.
D. Hình thang.