Bài tập Đồ thị hàm số y = ax2 (a ≠ 0) chọn lọc, có đáp án | Toán lớp 9
Bài tập Đồ thị hàm số y = ax2 (a ≠ 0) chọn lọc, có đáp án
Với Bài tập Đồ thị hàm số y = ax2 (a ≠ 0) chọn lọc, có đáp án Toán lớp 9 tổng hợp bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Đồ thị hàm số y = ax2 (a ≠ 0) từ đó đạt điểm cao trong bài thi môn Toán lớp 9.
Câu 1: Đồ thị hàm số y = 1/3 x2 đi qua điểm nào sau đây?
Lời giải:
Chọn đáp án B.
Câu 2: Tọa độ giao điểm của đồ thị hàm số y = x2 với đường thẳng y = 4x - 3 là?
A. (-1; 1), (3; 9)
B. (-1; 1), (-3; 9)
C. (1; 1), (3; 9)
D. (1; 1), (-3; 9)
Lời giải:
Phương trình hoành độ giao điểm là:
Do đó tọa độ giao điểm là (1; 1), (3; 9)
Chọn đáp án C.
Câu 3: Số giao điểm của đồ thị hàm số y = 4x2 với đường thẳng y = 4x - 3
A. 1
B. 0
C. 2
D. 3
Lời giải:
Phương trình hoành độ giao điểm:
Khi đó phương trình hoành độ giao điểm trên vô nghiệm.
Vậy không có giao điểm nào
Chọn đáp án B.
Câu 4: Trên mặt phẳng tọa độ cho điểm A( 1; 2) thuộc đồ thị hàm số y = ax2 (a ≠ 0).
Hỏi điểm nào thuộc đồ thị hàm số ?
A. M (2; 8)
B. N ( -2; 4)
C. P( - 3; 9)
D. Q( 4; 16)
Lời giải:
Vì điểm A(1; 2) thuộc đồ thị hàm số y = ax2 (a ≠ 0) nên:
2 = a.12 ⇒ a = 2
Vây hàm số đã cho là y = 2x2.
Trong các điểm đã cho chỉ có điểm M (2; 8) thuộc đồ thị hàm số .
Chọn đáp án A.
Câu 5: Biết đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm A(1; a). Hỏi có bao nhiêu giá trị của a thỏa mãn?
A. 1
B.2
C. 0
D. Vô số
Lời giải:
Do đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm A(1; a) nên:
a = a.12 ⇔ a = a ( luôn đúng với mọi a khác 0).
Vậy có vô số giá trị của a thỏa mãn.
Chọn đáp án D.
Câu 6: Cho đồ thị hàm số y = -2x2. Tìm các điểm thuộc đồ thị hàm số đã cho có tung độ - 8.
A. (2; -8)
B. (-2; -8)
C. Cả A và B đúng
D. Tất cả sai
Lời giải:
Các điểm thuộc đồ thị hàm số đã cho có tung độ bằng -8 thỏa mãn:
-8 = -2x2 ⇔ x2 = 4 ⇔ x = ±2
Vậy có 2 điểm thuộc đồ thị hàm số đã cho có tung độ bằng -8 là M (-2; - 8) và N(2; -8)
Chọn đáp án C.
Câu 7: Cho y = ax2 (a ≠ 0) đồ thị hàm số . Với giá trị nào của a thì đồ thị của hàm số đã cho nằm phía trên trục hoành.
A. a < 0
B. a > 0
C.
D. a > 2
Lời giải:
Đồ thị hàm số y = ax2 (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục tung làm đối xứng.
+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành.
+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành.
Do đó, để đồ thị hàm số đã cho nằm phía trên trục hoành thì a > 0.
Chọn đáp án B.
Câu 8: Cho đồ thị của các hàm số sau:
(1): y = - 2x2 (2): y = x2 (3): y = -3x2 (4): y = -10x2
Hỏi có bao nhiêu đồ thị hàm số nằm phía dưới trục hoành?
A. 1
B. 2
C. 3
D. 4
Lời giải:
Đồ thị hàm số y = ax2 (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục tung làm đối xứng.
+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành.
+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành.
Trong đồ thị các hàm số đã cho; các đồ thị nằm phía dưới trục hoành là”
(1): y = -2x2; (3): y = - 3x2 và (4):y = -10x2
Chọn đáp án C.
Câu 9: Cho đồ thị hàm số y = 3x2. Tìm tung độ của điểm thuộc parabol có hoành độ là số nguyên dương nhỏ nhất?
A. 0
B. 1
C. -3
D. 3
Lời giải:
Số nguyên dương nhỏ nhất là 1.
Do đó, tung độ của điểm thuộc parabol có hoành độ 1 là: y = 3.12 = 3
Chọn đáp án D.
Câu 10: Cho đồ thị hàm số y = x2 và y = 3x2. Tìm giao điểm của hai đồ thị hàm số đã cho?
A. O(0; 0)
B. A(1; 1)
C. O(0; 0) và A(1; 1)
D. O(0; 0) và B( 1; 3)
Lời giải:
Hoành độ giao điểm của hai đồ thị hàm số đã cho là nghiệm phương trình:
x2 = 3x2 ⇔ -2x2 = 0 ⇔ x = 0
Với x = 0 thì y= 02 = 0
Do đó,đồ thị hai hàm số đã cho cắt nhau tại điểm duy nhất là gốc tọa độ O(0; 0).
Chọn đáp án A.