Cách giải hệ phương trình đối xứng loại 1 cực hay | Toán lớp 9
Cách giải hệ phương trình đối xứng loại 1 cực hay
Với Cách giải hệ phương trình đối xứng loại 1 cực hay Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập giải hệ phương trình đối xứng loại 1 từ đó đạt điểm cao trong bài thi môn Toán lớp 9.
A. Phương pháp giải
Hệ phương trình đối xứng loại I theo ẩn x và y làHệ phương trình mà khi ta đổi vai trò của các ẩn x và y thìHệ phương trình vẫn không thay đổi.
Hệ phương trình đối xứng loại I có dạng
Bước 1: Đặt S = x + y, P = xy. Điều kiện: S2 ≥ 4P.
Bước 2: Biến đổi Hệ phương trình có hai ẩn S, P giải ra S và P (sử dụng phương pháp thế hoặc cộng đại số).
Bước 3: Tìm được S và P, khi đó x và y là nghiệm của phương trình bậc hai:
X2 - SX + P = 0
Giải phương trình bậc hai theo ẩn X.
Bước 4: Kết luận nghiệm của hệ phương trình.
Chú ý: Nếu (x0;y0) là nghiệm củaHệ phương trình thì (y0;x0) cũng là nghiệm của hệ phương trình.
B. Ví dụ minh họa
Ví dụ 1: Giải hệ phương trình .
Hướng dẫn:
Ví dụ 2: Giải hệ phương trình .
Hướng dẫn:
Vậy hệ phương trình có nghiệm là (1;3), (3;1).
Ví dụ 3: Giải hệ phương trình .
Hướng dẫn:
Điều kiện xác định: x ≥ 0; y ≥ 0.
C. Bài tập trắc nghiệm
Câu 1: Hệ phương trình sau có bao nhiêu nghiệm:
A. 1
B. 2
C. 3
D. 4
Lời giải:
Hướng dẫn:
Vậy hệ phương trình có 2 nghiệm là (1;2), (2;1).
Chọn đáp án B.
Câu 2: Hệ phương trình sau có bao nhiêu nghiệm:
A. 1
B. 2
C. 3
D. 4
Lời giải:
Hướng dẫn:
Với S = 0 ⇒ P = –3 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Với S = –2 ⇒ P = 1 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Chọn đáp án C.
Câu 3: Hệ phương trình sau có bao nhiêu nghiệm:
A. 1
B. 2
C. 3
D. 4
Lời giải:
Hướng dẫn:
Với S = – 8 ⇒ P = 13 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Với S = 3 ⇒ P = 2 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là (1; 2); (2;1)
Vậy hệ phương trình có 4 nghiệm là: (1; 2); (2;1); .
Chọn đáp án D.
Câu 4: Hệ phương trình sau: . Chọn nghiệm đúng của hệ phương trình.
A. (4;7) và (7;4)
B. (-1;-8) và (-8;-1)
C. (1;2) và (2;1)
D. A và B
Lời giải:
Hướng dẫn:
Với S = – 9 ⇒ P = 8 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là:(–1; –8); (–8; –1);
Với S = 11 ⇒ P = 28 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là (4;7); (7;4)
Vậy hệ phương trình có 4 nghiệm là: (4;7); (7;4); (–1;–8); (–8;–1).
Chọn đáp án D.
Câu 5: Hệ phương trình sau: . Đâu không phải là nghiệm đúng của hệ phương trình.
A. (1;6) và (6;1)
B. (2;3) và (3;2)
C. (–3;–7)
D. (–7;–3)
Lời giải:
Hướng dẫn:
Với S = – 10 ⇒ P = 21 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là:(–3; –7); (–7; –3);
Với S = 5 ⇒ P = 6 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là (2; 3); (3;2);
Vậy hệ phương trình có 4 nghiệm là: (2; 3); (3;2); (–3; –7); (–7; –3).
Chọn đáp án A.
Câu 6: Hệ phương trình sau: . Khẳng định nào sau đây không đúng?
A. Hệ phương trình có 2 nghiệm.
B. Hệ phương trình vô số nghiệm.
C. Một nghiệm của hệ là: (–2;3).
D. Nghiệm của hệ là: (–2;3); ((3;–2).
Lời giải:
Hướng dẫn:
Với S = 1 ⇒ P = – 6 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Vậy hệ có 2 nghiệm là:(3;–2); (–2;3).
Chọn đáp án B.
Câu 7: Hệ phương trình sau: . Khẳng định nào sau đây không sai?
A. Hệ phương trình có 1 nghiệm.
B. Hệ phương trình vô số nghiệm.
C. Một nghiệm của hệ là: (–2; 0).
D. Nghiệm của hệ là: (2; 0);(0; 2).
Lời giải:
Hướng dẫn:
Với S = 2 ⇒ P = 0 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Vậy hệ có 2 nghiệm là:(0; 2); (2; 0).
Chọn đáp án D.
Câu 8: Hệ phương trình sau: . Khẳng định nào sau đây sai ?
A. Hệ phương trình có 4 nghiệm.
B. Hai nghiệm (1;2) và (2;1) là nghiệm của hệ phương trình.
C. Hệ phương trình có 2 nghiệm.
D. A, B đúng.
Lời giải:
Hướng dẫn:
Với S = – 2 ⇒ P = – 3 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là:(–3; 1); (1; –3)
Với S = 3 ⇒ P = 2 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Suy ra hệ có 2 nghiệm là (1; 2); (2; 1);
Vậy hệ phương trình có 4 nghiệm là: (1; 2); (2; 1); (–3; 1); (1; –3).
Chọn đáp án C.
Câu 9: Hệ phương trình sau: . Khẳng định nào sau đây đúng?
A. Hệ phương trình có 2 nghiệm.
B. Hệ phương trình 4 nghiệm.
C. Một nghiệm của hệ là: (2; 4).
D. Hai nghiệm của hệ là (2;4); (4;2)
Lời giải:
Hướng dẫn:
Với S = 5 ⇒ P = 6 (tm), Khi đó x và y là nghiệm của phương trình bậc hai.
Vậy hệ có 2 nghiệm là: (2; 3); (3; 2).
Chọn đáp án A.
Câu 10: Cho hệ phương trình: . Với giá trị nào của m để hệ có nghiệm thực?
Lời giải:
Hướng dẫn:
Chọn đáp án B.