Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9
Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải
Với Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập hệ phương trình bậc nhất hai ẩn từ đó đạt điểm cao trong bài thi môn Toán lớp 9.
A. Phương pháp giải
Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thức nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn).
Bước 2: Dùng phương trình mới ấy để thay thế cho phương trình thức hai trong hệ (phương trình thứ nhất cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia có được ở bước 1).
Bước 3: Giải phương trình một ẩn vừa có, rồi suy ra nghiệm của hệ đã cho.
Bước 4: Kết luận.
B. Ví dụ minh họa
Ví dụ 1: Giải hệ phương trình sau:
Hướng dẫn:
Giải bằng phương pháp thế.
Chú ý: Ta nên rút y theo x ở phương trình hai của hệ, vì hệ số của y là 1.
Ta có: (2) ⇔ y = 8 - 2x.
Thay vào (1) ta được: 3x - 2(8 - 2x) = 5 ⇔ 7x - 16 = 5 ⇔ 7x = 21 ⇔ x = 3.
Với x = 3 thì y = 8 – 2.3 = 2.
Vậy nghiệm của hệ phương trình là (x;y) = (3;2).
Ví dụ 2: Giải hệ phương trình sau:
Hướng dẫn:
Từ pt (2) ta có: x = 5 + 3y.
Thay x = 5 + 3y vào pt (1) ta được:
4(5 + 3y) + 5y = 3 ⇔ 12y + 5y + 20 = 3 ⇔ 17y = – 17 ⇔ y = – 1.
Với y = – 1 thì x = 5 + 3( – 1 ) = 2.
Vậy nghiệm của hệ phương trình là (x;y) = (2;-1).
Ví dụ 3: Giải hệ phương trình sau:
Hướng dẫn:
Từ pt (1) ta có: y = –3 – 2x.
Thay y = –3 – 2x vào pt (2) ta được:
2x – 3(–3 – 2x) = 17 ⇔ 2x + 6x + 9 = 17 ⇔ 8x = 8 ⇔ x = 1.
Với x = 1 thì y = –3 – 2.1 = – 5.
Vậy nghiệm của hệ phương trình là (x;y) = (1;- 5).
C. Bài tập trắc nghiệm
Câu 1: Hệ phương trình sau: có nghiệm (x;y) là ?
A. (x;y) = (2;1)
B. (x;y) = (1;2)
C. (x;y) = (2;–1)
D. (x;y) = (1;1)
Lời giải:
Hướng dẫn:
Ta có: . Từ pt (2) ⇒ y = 5 – 2x.
3x – 2(5 – 2x) = 4 ⇔ 3x + 4x – 10 = 4 ⇔ 7x = 14 ⇔ x = 2.
Với x = 2 thì y = 5 – 2.2 = 1.
Vậy nghiệm của hệ phương trình là (x;y) = (2;1).
Chọn đáp án A.
Câu 2: Trong các hệ phương trình sau đâu là hệ phương trình bậc nhất 2 ẩn?
Lời giải:
Hướng dẫn:
Chọn đáp án A.
Vì HPT bậc nhất 2 ẩn có dạng là:
Câu 3: Tìm a, b sao cho hệ phương trình sau: có nghiệm (x;y) là (8;5).
A. a = 2, b = 3
B. a = 1, b = 3
C. a = 1, b = 4
D. a = 4, b = 1
Lời giải:
Hướng dẫn:
Vì hpt (I) có nghiệm (x;y) là (8;5) nên ta có:
Vậy đáp án đúng là C.
Câu 4: Cho hệ phương trình sau: . Tìm x + y = ?
A. 3
B. 5
C. 4
D. 6
Lời giải:
Hướng dẫn:
Ta có: 2x + y = 7 ⇒ y = 7 – 2x (1).
Thay (1) vào pt: – x + 4y = 10 ta được:
– x + 4(7 – 2x) = 10 ⇔ – x + 28 – 8x = 10 ⇔ – 9x = –18 ⇔ x = 2.
Với x = 2 thì y = 7 – 2.2 = 3.
Vậy nghiệm của hệ phương trình là (x;y) = (2;3).
Do đó x + y = 2 + 3 = 5.
Chọn đáp án B.
Câu 5: Tìm a, b sao cho đường thẳng (d): y = ax + b đi qua hai điểm A(2;3) và B(–2;1).
A. a = 3, b = 2
B. a = 1, b = 2
C. a = ½, b = 1
D. a = ½, b = 2
Lời giải:
Hướng dẫn:
Vì đường thẳng (d) hai qua hai điểm A,B nên ta có:
Từ –2a + b = 1 ⇒ b = 1 + 2a (1)
Thay (1) vào pt: 2a + b = 3 ta được:
2a + b = 3 ⇒ 2a + 1 + 2a = 3 ⇔ 4a = 2 ⇔ a = ½.
Với a = ½ thì b = 1 + 2. ½ = 2. Vậy a = ½ và b = 2.
Chọn đáp án D.
Câu 6: Hệ phương trình sau: . Tìm 2x – y =?
A. 0
B. 1
C. 2
D. 3
Lời giải:
Hướng dẫn:
Từ pt: x + y = 5 ⇒ x = 5 – y (1).
Thay (1) vào pt: 2x – y = 1 ta được:
2x – y = 1 ⇒ 2(5 – y) – y = 1 ⇔ 10 – 2y – y = 1 ⇔ 3y = 9 ⇔ y =3.
Với y = 3 thì x = 5 – 3 = 2.
Vậy nghiệm của hệ phương trình là (x;y) = (2;3).
Do đó: 2x – y = 2.2 – 3 = 4 – 3 = 1.
Chọn đáp án B.
Câu 7: Cho hệ phương trình sau: . Khi a = 2 thì nghiệm (x;y) của hệ là ?
Lời giải:
Hướng dẫn:
Chọn đáp án C.
Câu 8: Nghiệm (x;y) = (2;1) là nghiệm của hệ phương trình nào sau đây:
Lời giải:
Hướng dẫn:
Chọn đáp án B. Vì khi thay (x;y) = (2;1) vào hệ thỏa mãn.
Ta có:
pt (1) VT = 2x + y = 2.2 + 1 = 5 = VP
pt (2) VT = x + y = 2 + 1 = 3 = VP
⇒ Nghiệm (x;y) = (2;1) là nghiệm của hệ phương trình (II).
Câu 9: Hệ phương trình sau có bao nhiêu nghiệm:
A. Không có nghiệm
B. Có một nghiệm duy nhất.
C. Có vô số nghiệm.
D. Có hai nghiệm
Lời giải:
Hướng dẫn:
Ta có: x + y = 5 ⇒ x = 5 – y (1).
Thay (1) vào pt: x + y = 3 ta được: 5 – y + y = 3 ⇒ 0y = 2 (vô lý).
Vậy hệ phương trình không có nghiệm nào thỏa mãn.
Chọn đáp án A.
Câu 10: cho hệ phương trình sau: . Kết quả của 2xy – 1 = ?
A. 0
B. 1
C. 2
D. 3
Lời giải:
Hướng dẫn:
Ta có: x – y = 0 ⇒ x = y (1).
Thay x = y vào pt: 2x – y = 1 ta được: 2x – x = 1 ⇔ x = 1
Với x = 1 ⇒ y = 1.
Vậy nghiệm của hệ phương trình là (x;y) = (1;1).
Do đó: 2xy – 1 = 2.1.1 – 1 = 1.
Chọn đáp án B.