X

Các dạng bài tập Toán lớp 9

Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9


Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải

Với Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập hệ phương trình bậc nhất hai ẩn từ đó đạt điểm cao trong bài thi môn Toán lớp 9.

Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải

A. Phương pháp giải

Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thức nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn).

Bước 2: Dùng phương trình mới ấy để thay thế cho phương trình thức hai trong hệ (phương trình thứ nhất cũng thường được thay thế bởi hệ thức biểu diễn một ẩn theo ẩn kia có được ở bước 1).

Bước 3: Giải phương trình một ẩn vừa có, rồi suy ra nghiệm của hệ đã cho.

Bước 4: Kết luận.

B. Ví dụ minh họa

Ví dụ 1: Giải hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Hướng dẫn:

Giải bằng phương pháp thế.

Chú ý: Ta nên rút y theo x ở phương trình hai của hệ, vì hệ số của y là 1.

Ta có: (2) ⇔ y = 8 - 2x.

Thay vào (1) ta được: 3x - 2(8 - 2x) = 5 ⇔ 7x - 16 = 5 ⇔ 7x = 21 ⇔ x = 3.

Với x = 3 thì y = 8 – 2.3 = 2.

Vậy nghiệm của hệ phương trình là (x;y) = (3;2).

Ví dụ 2: Giải hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Hướng dẫn:

Từ pt (2) ta có: x = 5 + 3y.

Thay x = 5 + 3y vào pt (1) ta được:

4(5 + 3y) + 5y = 3 ⇔ 12y + 5y + 20 = 3 ⇔ 17y = – 17 ⇔ y = – 1.

Với y = – 1 thì x = 5 + 3( – 1 ) = 2.

Vậy nghiệm của hệ phương trình là (x;y) = (2;-1).

Ví dụ 3: Giải hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Hướng dẫn:

Từ pt (1) ta có: y = –3 – 2x.

Thay y = –3 – 2x vào pt (2) ta được:

2x – 3(–3 – 2x) = 17 ⇔ 2x + 6x + 9 = 17 ⇔ 8x = 8 ⇔ x = 1.

Với x = 1 thì y = –3 – 2.1 = – 5.

Vậy nghiệm của hệ phương trình là (x;y) = (1;- 5).

Hay lắm đó

C. Bài tập trắc nghiệm

Câu 1: Hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9 có nghiệm (x;y) là ?

 A. (x;y) = (2;1)

 B. (x;y) = (1;2)

 C. (x;y) = (2;–1)

 D. (x;y) = (1;1)

Lời giải:

Hướng dẫn:

Ta có: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9. Từ pt (2) ⇒ y = 5 – 2x.

3x – 2(5 – 2x) = 4 ⇔ 3x + 4x – 10 = 4 ⇔ 7x = 14 ⇔ x = 2.

Với x = 2 thì y = 5 – 2.2 = 1.

Vậy nghiệm của hệ phương trình là (x;y) = (2;1).

Chọn đáp án A.

Câu 2: Trong các hệ phương trình sau đâu là hệ phương trình bậc nhất 2 ẩn?

Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Lời giải:

Hướng dẫn:

Chọn đáp án A.

Vì HPT bậc nhất 2 ẩn có dạng là: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Câu 3: Tìm a, b sao cho hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9 có nghiệm (x;y) là (8;5).

 A. a = 2, b = 3

 B. a = 1, b = 3

 C. a = 1, b = 4

 D. a = 4, b = 1

Lời giải:

Hướng dẫn:

Vì hpt (I) có nghiệm (x;y) là (8;5) nên ta có: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Vậy đáp án đúng là C.

Câu 4: Cho hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9. Tìm x + y = ?

 A. 3

 B. 5

 C. 4

 D. 6

Lời giải:

Hướng dẫn:

Ta có: 2x + y = 7 ⇒ y = 7 – 2x (1).

Thay (1) vào pt: – x + 4y = 10 ta được:

– x + 4(7 – 2x) = 10 ⇔ – x + 28 – 8x = 10 ⇔ – 9x = –18 ⇔ x = 2.

Với x = 2 thì y = 7 – 2.2 = 3.

Vậy nghiệm của hệ phương trình là (x;y) = (2;3).

Do đó x + y = 2 + 3 = 5.

Chọn đáp án B.

Câu 5: Tìm a, b sao cho đường thẳng (d): y = ax + b đi qua hai điểm A(2;3) và B(–2;1).

 A. a = 3, b = 2

 B. a = 1, b = 2

 C. a = ½, b = 1

 D. a = ½, b = 2

Lời giải:

Hướng dẫn:

Vì đường thẳng (d) hai qua hai điểm A,B nên ta có: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Từ –2a + b = 1 ⇒ b = 1 + 2a (1)

Thay (1) vào pt: 2a + b = 3 ta được:

2a + b = 3 ⇒ 2a + 1 + 2a = 3 ⇔ 4a = 2 ⇔ a = ½.

Với a = ½ thì b = 1 + 2. ½ = 2. Vậy a = ½ và b = 2.

Chọn đáp án D.

Hay lắm đó

Câu 6: Hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9. Tìm 2x – y =?

 A. 0

 B. 1

 C. 2

 D. 3

Lời giải:

Hướng dẫn:

Từ pt: x + y = 5 ⇒ x = 5 – y (1).

Thay (1) vào pt: 2x – y = 1 ta được:

2x – y = 1 ⇒ 2(5 – y) – y = 1 ⇔ 10 – 2y – y = 1 ⇔ 3y = 9 ⇔ y =3.

Với y = 3 thì x = 5 – 3 = 2.

Vậy nghiệm của hệ phương trình là (x;y) = (2;3).

Do đó: 2x – y = 2.2 – 3 = 4 – 3 = 1.

Chọn đáp án B.

Câu 7: Cho hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9. Khi a = 2 thì nghiệm (x;y) của hệ là ?

Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Lời giải:

Hướng dẫn:

Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Chọn đáp án C.

Câu 8: Nghiệm (x;y) = (2;1) là nghiệm của hệ phương trình nào sau đây:

Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

Lời giải:

Hướng dẫn:

Chọn đáp án B. Vì khi thay (x;y) = (2;1) vào hệ Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9 thỏa mãn.

Ta có:

 pt (1) VT = 2x + y = 2.2 + 1 = 5 = VP

 pt (2) VT = x + y = 2 + 1 = 3 = VP

⇒ Nghiệm (x;y) = (2;1) là nghiệm của hệ phương trình (II).

Câu 9: Hệ phương trình sau có bao nhiêu nghiệm: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9

 A. Không có nghiệm

 B. Có một nghiệm duy nhất.

 C. Có vô số nghiệm.

 D. Có hai nghiệm

Lời giải:

Hướng dẫn:

Ta có: x + y = 5 ⇒ x = 5 – y (1).

Thay (1) vào pt: x + y = 3 ta được: 5 – y + y = 3 ⇒ 0y = 2 (vô lý).

Vậy hệ phương trình không có nghiệm nào thỏa mãn.

Chọn đáp án A.

Câu 10: cho hệ phương trình sau: Cách giải hệ phương trình bậc nhất hai ẩn cực hay, có lời giải | Toán lớp 9. Kết quả của 2xy – 1 = ?

 A. 0

 B. 1

 C. 2

 D. 3

Lời giải:

Hướng dẫn:

Ta có: x – y = 0 ⇒ x = y (1).

Thay x = y vào pt: 2x – y = 1 ta được: 2x – x = 1 ⇔ x = 1

Với x = 1 ⇒ y = 1.

Vậy nghiệm của hệ phương trình là (x;y) = (1;1).

Do đó: 2xy – 1 = 2.1.1 – 1 = 1.

Chọn đáp án B.

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải hay khác: