X

Các dạng bài tập Toán lớp 9

Các dạng bài tập Toán 9 Chương 1 phần Hình học cực hay có đáp án | Toán lớp 9


Các dạng bài tập Toán 9 Chương 1 phần Hình học cực hay có đáp án

Với Các dạng bài tập Toán 9 Chương 1 phần Hình học cực hay có đáp án Toán lớp 9 tổng hợp các dạng bài tập, bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Chương 1 phần Hình học từ đó đạt điểm cao trong bài thi môn Toán lớp 9.

Các dạng bài tập Toán 9 Chương 1 phần Hình học cực hay có đáp án

I. Các dạng bài tập

II. Lý thuyết & Trắc nghiệm theo bài học

Lý thuyết Chương 1: Hệ thức lượng trong tam giác vuông

Chủ đề 1: Hệ thức về cạnh và đường cao trong tam giác vuông

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Cho ΔABC, góc A bằng 900, AH ⊥ BC, AB = c, AC = b, BC = a, AH = h thì:

        + BH = c' được gọi là hình chiếu của AB xuống BC

        + CH = b' được gọi là hình chiếu của AC xuống BC

    Khi đó, ta có:

    1) AB2 = BH.BC hay c2 = a.c'

    AC2 = CH.BC hay b2 = a.b'

    2) AH2 = CH.BH hay h2 = b'.c'

    3) AB.AC = AH.BC hay b.c = a.h

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    5) AB2 + AC2 = BC2 hay b2 + c2 = a2 (Định lý Pytago)

Chủ đề 2: Tỉ số lượng giác của góc nhọn

1. Định nghĩa

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

2. Định lí

    Nếu hai góc phụ nhau thì sin góc này bằng cosin góc kia, tang góc này bằng cotang góc kia.

3. Một số hệ thức cơ bản

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

4. So sánh các tỉ số lượng giác

    a) Cho α,β là hai góc nhọn. Nếu α < β thì

    * sinα < sinβ; tanα < tanβ

    *cosα > cosβ; cotα > cotβ

    b) sinα < tanα; cosα < cotα

Chủ đề 3: Hệ thức về góc và cạnh trong tam giác vuông

1. Các hệ thức

    Trong một tam giác vuông, mỗi cạnh góc vuông bằng:

    a) Cạnh huyền nhân với sin góc đối hoặc nhân với cos góc kề

    b) Cạnh góc vuông kia nhân với tan góc đối hoặc cot góc kề

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    b = a.sinB = a.cosC

    c = a.sinC = a.cosB

    b = c.tanB = c.cotC

    c = b.tanB = b.cotC

2. Giải tam giác vuông

    Là tìm tất cả các yếu tố còn lại của một tam giác vuông khi biết trước hai yếu tố (trong đó có ít nhất một yếu tố về cạnh và không kể góc vuông)

Cách giải bài tập Hệ thức về cạnh và đường cao trong tam giác vuông

Lý thuyết và Phương pháp giải

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Cho ΔABC, góc A bằng 900, AH ⊥ BC, AB = c, AC = b, BC = a, AH = h thì:

        + BH = c' được gọi là hình chiếu của AB xuống BC

        + CH = b' được gọi là hình chiếu của AC xuống BC

    Khi đó, ta có:

    1) AB2 = BH.BC hay c2 = a.c'

    AC2 = CH.BC hay b2 = a.b'

    2) AH2 = CH.BH hay h2 = b'.c'

    3) AB.AC = AH.BC hay b.c = a.h

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    5) AB2 + AC2 = BC2 hay b2 + c2 = a2 (Định lý Pytago)

Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC vuông tại A, AB < AC. Biết AH = 6 cm, HC – HB = 3,5 cm. Tính độ dài AB, AC

Hướng dẫn:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Ta có: AH2 = BH.CH ⇒ BH.CH = 36

    Mặt khác: CH - BH = 3,5 (1)

    ⇒ (CH - BH)2 = 3,52 = 12,25

    Ta có: (CH + BH)2 = (CH - BH)2 + 4BH.CH = 12,25 + 4.36 = 156,25

    ⇒ CH + BH = √156,25 = 12,5 (2)

    Từ (1) và (2) ⇒ CH = 8; BH = 4,5

    Ta có: AB2 = BH.BC = 4,5.12,5 = 56,25 ⇒ AB = 7,5 (cm)

    AC2 = CH.BC = 8.12,5 = 100 ⇒ AB = 10 (cm)

Ví dụ 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E là hình chiếu của H trên AB và AC. Đặt BC = a; CA = b; AB = c; AH = h; BD = x; CE = y. Chứng minh rằng:

    a) a2x = c3; a2y = b3

    b) axy = h3

Hướng dẫn:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    a) Đặt BH = c'; CH = b'

    Xét ΔBDH và ΔBAC có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    ⇒ a.x = c.c'

    ⇒ a.a.x = a.c.c' hay a2x = a.c.c'

    Mặt khác a.c' = c2 nên a2x = c.c2 ⇒ a2x = c3

    Chứng minh tương tự, ta được a2y = b3

    b) Ta có: a2x.a2y = c3.b3

    Lại có: b.c = a.h nên a4.xy = a3h3

    ⇒ a.xy = h3

Ví dụ 3: Cho điểm A nằm ngoài đường thẳng xy và cách đường thẳng xy là 3 cm. Gọi M là điểm di động trên xy. Vẽ tam giác ABC vuông tại A sao cho AM là đường cao của tam giác đó. Tính giá trị nhỏ nhất của tích MB.MC

Hướng dẫn:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Gọi H là hình chiếu của A trên xy, H là điểm cố định và AH = 3cm

    Ta có: AM ≥ AH ( dấu bằng xảy ra khi M trùng H)

    Xét tam giác ABC vuông tại A có AM là đường cao nên :

    MB.MC = AM2 ≥ AH2 = 32 = 9

    Do đó, tích MB. MC đạt giá trị nhỏ nhất là 9 khi M trùng H

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có đáp án hay khác: