X

Các dạng bài tập Toán lớp 9

Cách tính Tỉ số lượng giác của góc nhọn cực hay, có đáp án | Toán lớp 9


Cách tính Tỉ số lượng giác của góc nhọn cực hay, có đáp án

Với Cách tính Tỉ số lượng giác của góc nhọn cực hay, có đáp án Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tỉ số lượng giác của góc nhọn từ đó đạt điểm cao trong bài thi môn Toán lớp 9.

Cách tính Tỉ số lượng giác của góc nhọn cực hay, có đáp án

Lý thuyết và Phương pháp giải

1. Định nghĩa

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

2. Định lí

    Nếu hai góc phụ nhau thì sin góc này bằng cosin góc kia, tang góc này bằng cotang góc kia.

3. Một số hệ thức cơ bản

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

4. So sánh các tỉ số lượng giác

    a) Cho α,β là hai góc nhọn. Nếu α < β thì

    * sinα < sinβ; tanα < tanβ

    *cosα > cosβ; cotα > cotβ

    b) sinα < tanα; cosα < cotα

Hay lắm đó

Ví dụ minh họa

Ví dụ 1: Cho ΔABC với Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án.Chứng minh rằng:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Kẻ AH vuông góc với BC, H ∈ BC

    Ta có: SABC = 1/2.AH.BC (1)

    Xét tam giác ABH vuông tại H có:

    sinB = AH/AB ⇒ AH = AB.sinB (2)

    Từ (1) và (2),ta có

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Ví dụ 2: Cho tam giác ABC, góc A bằng 600. Vẽ các đường cao AD và CE. Chứng minh rằng: BC = 2DE

Hướng dẫn:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Ta có: ΔABD ~ ΔACE (g.g)

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Xét ΔADE và ΔABC có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    ⇒ ΔADE ~ ΔABC (c.g.c)

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy BC = 2DE

Ví dụ 3: Chứng minh rằng giá trị cuả các biểu thức sau không phụ thuộc vào số đo của góc nhọn α

    a) A = cos4α + 2cos2α.sin2α + sin4α

    b) B = sin4α + cos2α.sin2α + cos2α

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Hướng dẫn:

    a) A = cos4 α + 2cos2 α.sin2 α + sin4 α

    =(cos2 α + sin2 α)2 = 12 = 1

    b) B = sin4 α + cos2 α.sin2 α + cos2 α

    = sin2 α(sin2 α + cos2 α) + cos2 α

    = sin2 α.1 + cos2 α = 1

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    = 2(1 + tan2 α) - 2tan2 α = 2

Ví dụ 4: Không dùng bảng số hay máy tính , hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần: cos 650; sin 200; cot 400, tan 480

Hướng dẫn:

    Ta có: cos 650 = sin 250; cot 400 = tan ⁡ 500

    Sắp xếp: sin 200 < sin 250 < sin 480 < tan 480 < tan ⁡ 500

    Do đó: sin 200 < cos 650 < tan 480 < cot 400

Ví dụ 5: Chứng minh định lí sin: Trong tam giác nhọn, độ dài các cạnh tỉ lệ với sin của các góc đối diện:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Hướng dẫn:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vẽ đường cao CH, ta có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Do đó:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Chứng minh tương tự, ta có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải hay khác: