X

Các dạng bài tập Toán lớp 9

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9


Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết

Với Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập xác định hệ số a của hàm số y = ax^2 từ đó đạt điểm cao trong bài thi môn Toán lớp 9.

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết

A. Phương pháp giải

Bài toán 1: Cho hàm số y = ax2 . Tìm a để đồ thị hàm số đi qua M(x0;y0)

Cách giải: Thay tọa độ của điểm M vào công thức của hàm số được phương trình y0 = ax02 (1). Giải phương trình (1) tìm a

Bài toán 2: Cho hàm số y = ax2 (trong đó a = f(m)). Tìm m để hàm số đã cho là hàm số bậc hai

Cách giải: Để hàm số y = ax2 là hàm số bậc hai thì hệ số a ≠ 0 hay f(m) ≠ 0. Giải điều kiện này ta tìm được m

Bài toán 3: Cho hàm số y = ax2 (trong đó a = f(m)). Tìm m để hàm số đã cho đồng biến hoặc nghịch biến

Cách giải: Ta sử dụng kết quả

+ Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0

+ Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0

Ví dụ 1: Cho hàm số y = (m2 – m)x2. Tìm m để đồ thị hàm số đi qua điểm A(1;2)

Giải:

Đồ thị hàm số đi qua điểm A(1;2)

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Vậy với m = -1 hoặc m = 2 thì đồ thị hàm số đi qua điểm A(1;2)

Ví dụ 2: Tìm m để hàm số y = (m + 2)x2 là hàm số bậc hai

Giải:

Để hàm số đã cho là hàm số bậc hai thì hệ số a = m + 2 ≠ 0 ⇔ m ≠ -2

Vậy với m ≠ -2 thì hàm số đã cho là hàm số bậc hai

Cho hàm số y = ax2. Tìm a để đồ thị hàm số đi qua điểm A(-2;8)

Giải:

Đồ thị hàm số đi qua điểm A(-2;8) ⇔ 8 = a(-2)2 ⇔ 8 = 4a ⇔ a = 2

Vậy với a = 2 thì đồ thị hàm số đi qua điểm A(-2;8)

Ví dụ 3: Tìm m để hàm số y = (m – 4)x2 đồng biến với mọi x > 0

Giải:

Hàm số y = (m – 4)x2 đồng biến với mọi x > 0 khi hệ số a = m – 4 > 0 hay m > 4

Vậy với m > 4 thì hàm số đồng biến với mọi x > 0

Hay lắm đó

B. Bài tập

Câu 1: Cho hàm số y = (k2 – 2k + 3)x2. Tìm k để đồ thị hàm số đi qua điểm A(1;6)

A. k = 1, k = 2

B. k = -1, k = 3

C. k = 2, k = 5

D. k = 3, k = -4

Giải

Đồ thị hàm số đi qua điểm A(1;6)

Vậy với k = -1 hoặc k = 3 thì đồ thị hàm số đi qua điểm A(1;6)

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Đáp án B

Câu 2: Cho hàm số y = (m + 1)x2. Tìm m để đồ thị hàm số đi qua điểm A(-4;32)

A. m = 1

B. m = 2

C. m = 3

D. m = 4

Giải

Đồ thị hàm số đi qua điểm A(-4;32)

Vậy với m = 1 thì đồ thị hàm số đi qua điểm A(-4;32) ⇔ 32 = (m + 1)(-4)2

⇔ 32 = (m + 1)16 ⇔ m + 1 = 2 ⇔ m = 1

Đáp án A

Câu 3: Cho hàm số y = ax2. Tìm a để đồ thị hàm số đi qua điểm Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

A. a = -1

B. a = 22

C. a = 3

D. a = 1

Giải

Đồ thị hàm số đi qua điểm Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Vậy với a = 1 thì đồ thị hàm số đi qua điểm Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Đáp án D

Câu 4: Tìm m để hàm số y = (m2 – 2)x2 là hàm số bậc hai

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Giải

Để hàm số đã cho là hàm số bậc hai thì hệ số a = m2 - 2 ≠ 0 ⇔ m2 ≠ 2 ⇔ Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Vậy với Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9 thì hàm số đã cho là hàm số bậc hai.

Đáp án C

Câu 5: Tìm m để hàm số y = (m – 4)x2 nghịch biến với mọi x > 0

A. m = 5

B. m < 4

C. m < 10

D. m = ±9

Giải

Hàm số y = (m – 4)x2 nghịch biến với mọi x > 0 khi hệ số a = m – 4 < 0

hay m < 4

Vậy với m < 4 thì hàm số nghịch biến với mọi x > 0

Đáp án B

Hay lắm đó

Câu 6: Tìm m để hàm số y = (m2 – m)x2 đồng biến với mọi x > 0

A. m < 0 hoặc m > 1

B. m < -1 hoặc m > 1

C. m < -2 hoặc m > 1

D. m < -6 hoặc m > 10

Giải

Hàm số y = (m2 – m)x2 đồng biến với mọi x > 0 khi hệ số a = m2 – m > 0

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Vậy với m > 1 hoặc m < 0 thì hàm số đồng biến với mọi x > 0

Đáp án A

Câu 7: Tìm m để hàm số y = (m2 – m)x2 nghịch biến với mọi x > 0

A. -1 < m < 1

B. -2 < m < 1

C. 0 < m < 1

D. -3 < m < 4

Giải

Hàm số y = (m2 – m)x2 nghịch biến với mọi x > 0 khi hệ số a = m2 – m < 0

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Vậy với 0 < m < 1 thì hàm số nghịch biến với mọi x > 0

Đáp án C

Câu 8: Tìm m để hàm số y = (m2 – 3m + 2)x2 là hàm số bậc hai

A. m ≠ -2 và m ≠ -1

B. m ≠ 2 và m ≠ -1

C. m ≠ 3 và m ≠ 1

D. m ≠ 2 và m ≠ 1

Giải

Để hàm số đã cho là hàm số bậc hai thì hệ số a = m2 – 3m + 2 ≠ 0

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Vậy với m ≠ 2 và m≠ 1 thì hàm số đã cho là hàm số bậc hai

Đáp án D

Câu 9: Tìm a để hàm số y = (2a2 – 6a)x2 là hàm số bậc hai

A. a ≠ -7 và a ≠ -1

B. a ≠ 0 và a ≠ 3

C. a ≠ 5 và a ≠ -1

D. a ≠ 4 và a ≠ 1

Giải

Để hàm số đã cho là hàm số bậc hai thì 2a2 – 6a ≠ 0

Cách xác định hệ số a của hàm số y = ax^2 hay, chi tiết | Toán lớp 9

Vậy với a ≠ 0 và a ≠ 3 thì hàm số đã cho là hàm số bậc hai

Đáp án B

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải hay khác: