X

Các dạng bài tập Toán lớp 9

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9


Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay

Với Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất từ đó đạt điểm cao trong bài thi môn Toán lớp 9.

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay

A. Phương pháp giải

Phương pháp:

Bước 1: Tìm điều kiện của m để hệ có nghiệm duy nhất sau đó giải hệ phương trình tìm nghiệm (x;y) theo tham số m.

Bước 2: Thế x và y vừa tìm được vào biểu thức điều kiện, sau đó giải tìm m.

Bước 3: Kết luận.

B. Ví dụ minh họa

Ví dụ 1: Cho hệ phương trình Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9 (m là tham số).

Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn x2 + y2 = 5.

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9 nên hệ phương trình luôn có nghiệm duy nhất (x;y).

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Vậy m = 1 hoặc m = –2 thì phương trình có nghiệm thỏa mãn đề bài.

Ví dụ 2: Cho hệ phương trình Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9 (a là tham số).

Tìm a để hệ phương trình có nghiệm duy nhất Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9 là số nguyên.

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Hệ phương trình luôn có nghiệm duy nhất (x;y) = (a;2).

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Ví dụ 3: Cho hệ phương trình: Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9(I) (m là tham số).

Tìm m đề hệ phương trình có nghiệm duy nhất sao cho 2x – 3y = 1.

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Hay lắm đó

C. Bài tập trắc nghiệm

Sử dụng hệ sau trả lời câu 1, câu 2, câu 3.

Cho hệ phương trình sau (I): Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Câu 1: Với giá trị nào của m thì hệ có nghiệm duy nhất thỏa mãn x = y + 1.

 A. m = 0

 B. m = 1

 C. m = 0 hoặc m = –1

 D. m = 0 hoặc m = 1

Lời giải:

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Vậy với m = 0 hoặc m = –1 thỏa mãn điều kiện đề bài.

Chọn đáp án C.

Câu 2: Với giá trị nào của m thì hệ có nghiệm duy nhất thỏa mãn x < 0, y > 0.

 A. m > 0

 B. m < 0

 C. m < 1

 D. m > 1

Lời giải:

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

• 1 – m2 < 0 ⇒ (1 – m)(1 + m) < 0 ⇒ m < –1 hoặc m > 1.(*)

• 2m > 0 ⇒ m > 0.(**)

Kết hợp điều kiện hai trương hợp trên, suy ra m > 1.

Vậy m > 1 thì thỏa mãn x < 0, y> 0.

Chọn đáp án D.

Câu 3: Với giá trị nào của m thì hệ có nghiệm duy nhất thỏa mãn x < 1.

 A. m > 0

 B. với mọi m khác 0

 C. không có giá trị của m

 D. m < 1

Lời giải:

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Vậy với mọi m khác 0 thì thỏa mãn điều kiện đề bài: x < 1.

Chọn đáp án B.

Sử dụng hệ sau trả lời câu 4, câu 5.

Cho hệ phương trình: Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9.(m là tham số).

Câu 4: Với giá trị nào của m để hệ có nghiệm duy nhất sao cho x – 1 > 0. Khẳng định nào sau đây là đúng ?

 A. với mọi m thì hệ có nghiệm duy nhất.

 B. với m > 2 thì hệ có nghiệm thỏa mãn x – 1 > 0.

 C. với m > –2 thì hệ có nghiệm thỏa mãn x – 1 > 0.

 D. Cả A, B, C đều sai.

Lời giải:

Hướng dẫn:

Để hệ phương trình có nghiệm duy nhất Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9.

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Vậy m > – 4 thì thỏa mãn điều kiện x – 1 > 0.

Chọn đáp án D.

Câu 5: Với giá trị nào của m để hệ có nghiệm duy nhất sao cho Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9. Khẳng định nào sau đây là đúng ?

 A. với m = 0 hoặc m = 1 thì hệ thỏa mãn điều kiện bài toán.

 B. với m = 0 thì hệ thỏa mãn điều kiện bài toán.

 C. với m = 1 thì hệ thỏa mãn điều kiện bài toán.

 D. Cả A, B, C đều đúng.

Lời giải:

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Chọn đáp án A.

Sử dụng hệ sau trả lời câu 6.

Cho hệ phương trình: Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9.(m là tham số).

Hay lắm đó

Câu 6: Với giá trị nào của m để hệ có nghiệm duy nhất sao cho 3x – y = 5.

 A. m = 2,

 B. m = – 2

 C. m = 0,5

 D. m = - 0,5

Lời giải:

Hướng dẫn:

Để hệ phương trình có nghiệm duy nhất:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Vậy với m = ½ thỏa mãn điều kiện đề bài.

Chọn đáp án C.

Câu 7: Cho hệ phương trình: Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9.(m là tham số).

Với giá trị nào của m để hệ có nghiệm duy nhất sao cho x2 – 2y2 = –2.

 A. m = 0

 B. m = 2

 C. m = 0 hoặc m = –2

 D. m = 0 hoặc m = 2

Lời giải:

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Trừ vế theo vế của pt (1) với pt (2) ta được: 3y = 3m – 3 ⇔ y = m - 1

Thế y = m - 1 vào pt: x – 2y = 2 ⇔ x – 2(m – 1) = 2 ⇔ x = 2m

Vậy hệ phương trình có nghiệm là: x = 2m; y = m – 1

Theo đề bài ta có: x2 – 2y2 = –2 ⇒ (2m)2 – 2 (m – 1)2 = –2

⇔ 4m2 – 2m2 + 4m – 2 = –2 ⇔ m2 + 2m = 0 Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Vậy với m = 0 hoặc m = –2 thì hệ thỏa mãn điều kiện: x2 – 2y2 = –2.

Chọn đáp án C.

Câu 8: Cho hệ phương trình: Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9. (m là tham số), có nghiệm (x;y). Với giá trị nào của m để A = xy + x – 1 đạt giá trị lớn nhất.

 A. m = 1

 B. m = 2

 C. m = –1

 D. m = 3

Lời giải:

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Trừ vế theo vế của pt (1) với pt (2) ta được: 2x = 2m + 4 ⇔ x = m + 2

Thế x = m + 2 vào pt: x + y = 5 ⇔ m + 2 + y = 5 ⇔ y = 3 – m

Vậy hệ phương trình có nghiệm là: x = m + 2; y = 3 – m

Theo đề bài ta có:

A = xy + x – 1

= (m + 2)(3 – m) + m + 2 – 1

= – m2 + 2m – 1 + 8

= 8 – (m – 1)2 8

Vậy Amax = 8 ⇔ m = 1

Vậy với m = 1 thì A đạt giá trị lớn nhất.

Chọn đáp án A.

Câu 9: Cho hệ phương trình: Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9. (m là tham số), có nghiệm (x;y). Tìm m nguyên để T = y/x nguyên.

 A. m = 1

 B. m = –2 hoặc m = 0

 C. m = -2 và m = 1

 D. m = 3

Lời giải:

Hướng dẫn:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

Để T nguyên thì (m + 1) là ước của 1.⇒ (m + 1)

• m + 1 = –1 ⇒ m = –2.

• m + 1 = 1 ⇒ m = 0.

Vậy với m = –2 hoặc m = 0 thì T nguyên.

Chọn đáp án B.

Câu 10: Tìm số nguyên m để hệ phương trình: Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9. (m là tham số), có nghiệm (x;y) thỏa mãn x > 0, y < 0.

 A. m ∈ Z

 B. m ∈ {-3;-2;-1;0}

 C. vô số.

 D. không có

Lời giải:

Hướng dẫn:

hệ phương trình có nghiệm duy nhất:

Tìm điều kiện của m để hệ phương trình có nghiệm duy nhất cực hay | Toán lớp 9

vậy m ∈ {-3;-2;-1;0} thì hệ thỏa mãn x > 0, y < 0.

Chọn đáp án B.

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải hay khác: