X

Các dạng bài tập Toán lớp 9

Bài tập Hệ thức về cạnh và đường cao trong tam giác vuông chọn lọc, có lời giải | Toán lớp 9


Bài tập Hệ thức về cạnh và đường cao trong tam giác vuông chọn lọc, có lời giải

Với Bài tập Hệ thức về cạnh và đường cao trong tam giác vuông chọn lọc, có lời giải Toán lớp 9 tổng hợp bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Hệ thức về cạnh và đường cao trong tam giác vuông từ đó đạt điểm cao trong bài thi môn Toán lớp 9.

Bài tập Hệ thức về cạnh và đường cao trong tam giác vuông chọn lọc, có lời giải

Bài 1: Tính x, y trong mỗi hình sau:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Bài 2: Cho tam giác ABC vuông tại A, AB : AC = 7 : 24, BC = 625 cm. Tính độ dài hình chiếu của hai cạnh góc vuông trên cạnh huyền.

Bài 3: Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 20 cm, BH = 9cm. Tính độ dài BC và AH

Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB/AC = 20/21 và AH = 420. Tính chu vi tam giác ABC

Bài 5: Cho tam giác ABC vuông tại A, đường cao AH

    Cho biết AC/AB = √2; HC - HB = 2cm.Tính:

    a) Tỉ số HC : HB

    b) Các cạnh của tam giác ABC

Bài 6: Cho tam giác nhọn ABC, hai đường cao BD và CE cắt nhau tại H. Trên HB, HC lần lượt lấy các điểm M, N sao cho góc AMC bằng góc ANB bằng 900. Chứng minh rằng AM = AN

Bài 7: Cho tam giác ABC đường cao AH. Vẽ HD ⊥ AB. Tia phân giác của góc AHC cắt AC tại F. Biết AB = 6cm, AC = 8cm, BC = 10 cm. Tính:

    a) Độ dài AH

    b) Chu vi tam giác ADF

Hay lắm đó

Bài 8: Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Bài 9: Cho tam giác ABC vuông tại A có diện tích S không đổi. Gọi p là chu vi của nó. Tìm giá trị nhỏ nhất của p.

Đáp án và hướng dẫn giải

Bài 1:

    a) x = 4,5 và y = 7,5

    b) Áp dụng hệ thức b2 = a.b' ta được: 302 = x(x + 32)

    x2 + 32x - 900 = 0 ⇔ (x - 18)(x + 50) = 0 Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    y2 = 18(18 + 18) ⇒ y = 18√2

Bài 2:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vẽ AH ⊥ BC

    Ta có: AB2 = BH.BC ; AC2 = CH.BC

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Ta có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    ⇒ BH = 49.1 = 49; CH = 576.1 = 576

Bài 3:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Đặt HC = x. Áp dụng hệ thức AC2 = BC.HC

    ⇒ 202 = (9 + x)x

    ⇔ x2 + 9x - 400 = 0

    ⇔ (x + 25)(x - 16) = 0

    ⇔ x = -25 (loại); x = 16

    Vậy BC = 16 + 9 = 25 cm

    Ta có: AH2 = HB.HC = 9.25 ⇒ AH = 15 (cm)

Bài 4:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Đặt AB = 20k ⇒ AC = 21k

    Áp dụng định lí Pytago, tính được BC = 29k

    Áp dụng hệ thức AB. AC = AH. BC

    ⇒ 20k.21k = 420.29k ⇒ k = 29

    Do đó: AB = 580; AC = 609; BC = 841

    Khi đó, chu vi của tam giác ABC là 2030

Bài 5:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    a) Ta có: AB2 = BH.BC ; AC2 = CH.BC

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    b) Ta có: HC - HB = 2; CH/BH = 2

    ⇒ HC = 4; HB = 2; BC = 6 (cm)

    Vì AB2 = BH.BC nên AB = √2.6 = 2√3 (cm)

    AC2 = CH.BC nên AC = √4.6 = 2√6 (cm)

Hay lắm đó

Bài 6:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Áp dụng hệ thức b2 = a.b' vào các tam giác vuông AMC và ANB ta được:

    AM2 = AC.AD ; AN2 = AE.AB

    ΔABD ~ ΔACE (g.g)

    ⇒ AB/AC = AD/AE ⇒ AC.AD = AE.AB

    ⇒ AM2 = AN2 hay AM = AN

Bài 7:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    a) Ta có: AB = 6cm; AC = 8cm; BC = 10cm

    Vì 62 + 82 = 100 = 102

    Nên AB2 + AC2 = BC2

    Áp dụng định lý đảo của định lý Py - ta - go

    Suy ra tam giác ABC vuông tại A

    Ta có: AB. AC = AH. BC

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    b) Xét tam giác ABH vuông tại H, có:

    AH2 = AB.AD

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Xét tam giác ABC vuông tại A có:

    AC2 = BC.HC

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Xét tam giác AHC có HF là đường phân giác nên

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Áp dụng định lí Pytago vào tam giác ADF vuông tại A có:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy chu vi tam giác ADF là:

    3,84 + 24/7 + 5,15 = 12,4 (cm)

Bài 8:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    ΔABC vuông tại A, AH là đường cao nên AH2 = HB.HC

    ⇔ AH4 = HB2.HC2

    Lại có: HB2 = AB.BD; HC2 = AC.CE

    ⇔ AH4 = AB.BD.AC.CE

    Nhưng AB. AC = AH. BC nên AH4 = AH.BC.BD.CE

    Do đó: AH3 = BC.BD.CE

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vì AH2 = HB.HC nên

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Bài 9:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Gọi độ dài hai cạnh góc vuông là x và y

    ⇒ độ dài cạnh huyền là Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Ta có: Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Mặt khác: Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Do đó: Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy minp = 2√S (√2 + 1) khi ∆ABC vuông cân.

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải hay khác: