Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án | Toán lớp 9
Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án
Với Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước cực hay, có đáp án Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tìm m để phương trình có nghiệm thỏa mãn điều kiện cho trước từ đó đạt điểm cao trong bài thi môn Toán lớp 9.
A. Phương pháp giải
Dạng 3.3.1: Tìm m để phương trình có nghiệm thỏa mãn điều kiện về dấu hoặc thỏa mãn đẳng thức, bất đẳng thức liên hệ giữa các nghiệm
Bước 1: Tìm điều kiện a ≠ 0 (nếu cần) và điều kiện để phương trình có nghiệm.
Bước 2: Tính tổng S và tích P của hai nghiệm theo định lý Vi-ét.
Bước 3: Sử dụng hệ thức Vi-ét, kết hợp biến đổi đẳng thức, bất đẳng thức để tìm tham số.
Bước 4: Đối chiếu điều kiện và kết luận.
Dạng 3.3.2: Tìm tham số m để phương trình có một nghiệm là x0.
Bước 1: Thay giá trị x0 vào phương trình để tìm tham số.
Bước 2: Thay giá trị của tham số vào phương trình hoặc hệ thức Vi-ét để tìm nghiệm còn lại.
Bước 3: Kết luận.
Dạng 3.3.3: Tìm giá trị của tham số để hai phương trình có ít nhất một nghiệm chung.
Bước 1: Tìm điều kiện để các phương trình có nghiệm.
Bước 2: Tìm nghiệm chung và tìm tham số: Có thể giả sử x0 là nghiệm chung, lập hệ phương trình trình hai ẩn (x0 và tham số) và giải hệ phương trình.
Bước 3: So sánh với điều kiện và kết luận.
B. Các ví dụ điển hình
Ví dụ 1: Tìm m để phương trình x2 - 2(m - 2)x - 6m = 0 có nghiệm x1; x2 sao cho biểu thức x12 + x22 đạt giá trị nhỏ nhất.
Lời giải
Chọn D
Ví dụ 2:Tìm m để mx2 - 2(m + 1)x + m + 3 = 0 là phương trình bậc hai nhận x = -2 là nghiệm.
Lời giải
Chọn A
Ví dụ 3: Tìm m để hai phương trình x2 + x + m - 2 = 0 (1) và x2 + (m - 2)x + 1 = 0 (2) có nghiệm chung.
Lời giải
Chọn D
C. Bài tập vận dụng
Bài 1: Số các giá trị của m để phương trình x2 - 6x + (5 - m2) = 0 có hai nghiệm x1; x2 sao cho 3x1.x2 = x1 + x2.
Lời giải:
Đáp án A
Bài 2: Tìm m để phương trình x2 - (m + 1)x + m = 0 có hai nghiệm là dộ dài hai cạnh của hình chữ nhật có chu vi gấp bốn lần diện tích.
Lời giải:
Đáp án A
Bài 3: Tìm m để phương trình x2 + 2mx + (m - 1)2 = 0 có hai nghiệm x1; x2 sao cho x12 + x22.
Lời giải:
Đáp án D
Bài 4: Tìm m để phương trình x2 + 2mx + m2 - m + 1 = 0 có hai nghiệm x1, x2 thỏa mãn x12 - 2mx2 = 9.
Lời giải:
Đáp án C
Bài 5: Số các giá trị của m để hai phương trình x2 - (2m + 1)x + 3m = 0 (1) và x2 - mx - m - 1 = 0 (2) có nghiệm chung là:
Lời giải:
Đáp án B
Bài 6: Số các giá trị của tham số m để phương trình mx2 + (m - 2)x + 2(1 - m) = 0 có hai nghiệm nguyên là:
Lời giải:
Đáp án A
Bài 7: Tìm m để phương trình x2 + 3mx + 2m2 + m - 1 = 0 có hai nghiệm nguyên dương.
Lời giải:
Đáp án D
Bài 8: Tìm m để phương trình bậc hai (2m - 1)x2 - 2mx + 1 = 0 có nghiệm âm lớn hơn -1.
Lời giải:
Đáp án D
Bài 9: Cho phương trình x2 + (m - 2)x - 8 = 0. Gọi m1, m2 là các giá trị của tham số m để phương trình có hai nghiệm x1, x2 sao cho biểu thức Q = (x12 - 1)(x22 - 4) đạt giá trị lớn nhất. Giá trị của biểu thức m13(m2 + 1) + m23(m1 + 1) là:
Lời giải:
Đáp án B
Bài 10: Tìm m để phương trình x2 - 2x + 1 - m2 = 0 để phương trình có hai nghiệm phân biệt x1; x2 sao cho x1 < x2 và x12 + 2x1 - 4x2 = 0
Lời giải:
Đáp án B